Papers by Fernando M Jimenez
Edición 117 de la Revista IT/USERS®, publicación líder desde 1998 en contenidos de alta tecnologí... more Edición 117 de la Revista IT/USERS®, publicación líder desde 1998 en contenidos de alta tecnología para el mercado corporativo peruano e hispanoamericano
En este segundo proyecto de robótica, el enfoque se halla en un reto planteado que consiste en mo... more En este segundo proyecto de robótica, el enfoque se halla en un reto planteado que consiste en mover objetos haciendo uso del gripper de un brazo robótico con 6 grados de libertad (6 DoF). En este proyecto, al igual que con anteriores, haremos uso del enorme poder computacional que nos brinda el lenguaje R, el cual, si bien se encuentra orientado al manejo de data para fines estadísticos, nos permite extrapolar esta ventaja a la gestión de cálculos avanzados y llevándonos a un paso del procesamiento de Big Data; además de la multitud de librerías que posee, permitiendo a este lenguaje realizar gran cantidad de tareas.
ABSTRACT
In this RESEARCH, We will model and design a self organizing neural network for the mapp... more ABSTRACT
In this RESEARCH, We will model and design a self organizing neural network for the mapping and clustering of three-dimensional structures of 3D data and vector signals. A Self Organizing Feature Map (SOFM) is a type of artificial neural network (ANN), which trains with unsupervised learning to produce a discretized representation and low-dimensional (usually two dimensional) space entry training samples. Self-organizing maps are different from other artificial neural networks in the sense that they use in their computational clustering a neighborhood function to preserve the topological properties of the input space.
Lima SMART CITY Transportation System (R)EVOLUTION
SYSTEMS ENGINEERING In-depth running case
The... more Lima SMART CITY Transportation System (R)EVOLUTION
SYSTEMS ENGINEERING In-depth running case
The city of Lima is home to 8,693,387 residents as of January 2014, according to the Peruvian National Institute of Statistics and Informatics (INEI by its name in Spanish). The total population in all 43 of the capital's districts is expected to be around 8,755,262, representing 28.4 percent of the country's 30.8 million people.
Lima’s transportation system is a fragmented, loosely regulated and very chaotic complex system. With such a populated city, public transportation is a must, but Lima's public transportation system is insufficient and disorganized.
The public bus system in Lima is a bewildering mixture of formal and informal, and virtually devoid of any real accountability. Drivers are essentially free agents, assigned to routes by concession holders who have city-issued permits that enable them to operate buses on a designated route.
The cutthroat competition, coupled with ever-worsening congestion, results in thousands of accidents each year, and hours-long commutes for the roughy 80 percent of residents who depend on public transportation. Even among South American cities, Lima is infamous for its traffic issues. Chaotic congestion, high rates of fatalities, and a deregulated, confusing transportation network are all hallmarks of the Peruvian capital's urban landscape.
Objective: to apply course learning, INCOSE and NASA systems Engineering Handbooks guidelines to search for a solution to a real-world complex systems engineering scenario.
This case will provide the student with exposure to as well as familiarity with contributing ideas in a technical discussion.
The case will be structured using the Friedman-Sage framework (Friedman and Sage 2003; Friedman and Sage 2004), which decomposes a case in the following concept areas:
Lima SMART CITY Transportation System (R)EVOLUTION
SYSTEMS ENGINEERING In-depth running case
The... more Lima SMART CITY Transportation System (R)EVOLUTION
SYSTEMS ENGINEERING In-depth running case
The city of Lima is home to 8,693,387 residents as of January 2014, according to the Peruvian National Institute of Statistics and Informatics (INEI by its name in Spanish). The total population in all 43 of the capital's districts is expected to be around 8,755,262, representing 28.4 percent of the country's 30.8 million people.
Lima’s transportation system is a fragmented, loosely regulated and very chaotic complex system. With such a populated city, public transportation is a must, but Lima's public transportation system is insufficient and disorganized.
The public bus system in Lima is a bewildering mixture of formal and informal, and virtually devoid of any real accountability. Drivers are essentially free agents, assigned to routes by concession holders who have city-issued permits that enable them to operate buses on a designated route.
The cutthroat competition, coupled with ever-worsening congestion, results in thousands of accidents each year, and hours-long commutes for the roughy 80 percent of residents who depend on public transportation. Even among South American cities, Lima is infamous for its traffic issues. Chaotic congestion, high rates of fatalities, and a deregulated, confusing transportation network are all hallmarks of the Peruvian capital's urban landscape.
Objective: to apply course learning, INCOSE and NASA systems Engineering Handbooks guidelines to search for a solution to a real-world complex systems engineering scenario.
This case will provide the student with exposure to as well as familiarity with contributing ideas in a technical discussion.
The case will be structured using the Friedman-Sage framework (Friedman and Sage 2003; Friedman and Sage 2004), which decomposes a case in the following concept areas:
Abstract: a Linear Quadratic Gaussian Controller (LQG) is designed for a tail controlled surface-... more Abstract: a Linear Quadratic Gaussian Controller (LQG) is designed for a tail controlled surface-to-air missile model in order to meet design specifications. The mathematical model of the flexible missile is subject to uncertainties that may arise from unmodelled dynamics, parameter variation or linearization of nonlinear elements. Since these uncertainties are not taken into account in the LQG controller, microns Analysis is applied to the design in order to evaluate the Robust Performance, Robust Stability, and Nominal Performance of the system. Finally, a Linear Quadratic Gaussian controller is designed using Loop Transfer Recovery (LQGLTR) in order to improve the Robust Stability of the system. It is found that the Robust Stability of the design is improved, but as a consequence of losing nominal performance. The microns Analysis and Synthesis Toolbox and the Control Toolbox of MATLAB were used for the design, assembly, analysis and simulation of the missile flight control system. Robust multivariable control, Linear optimal estimation, Missile autopilot.
Diseño de un Sistema de Control Auto Organizante para el control de Semáforos de Intersecciones v... more Diseño de un Sistema de Control Auto Organizante para el control de Semáforos de Intersecciones viales basados en Redes Neuronales.
Sistema de Control por Auto Organización basado en la Red Neuronal de Retropropagación , Red Neuronal Identificadora y la Red Neuronal del Controlador, etapa de Conteo de Vehículos, patrones de tráfico y lsensores.
Thesis Chapters by Fernando M Jimenez
Desarrollo de un prototipo electrónico de monitoreo y enfriamiento automatizado por agua para tanques estacionarios superficiales de gas licuado de petróleo, 2019
Esta tesis está orientada hacia tanques estacionarios de gas licuado de petróleo utiliz... more Esta tesis está orientada hacia tanques estacionarios de gas licuado de petróleo utilizados en la industria, que son de mayor riesgo por el volumen en que se presentan. Por ello, OSINERGMIN exige cumplir una serie de normas para su uso como es la protección contra incendios. Es por ello que el objetivo de esta investigación es desarrollar un prototipo electrónico de monitoreo y enfriamiento automatizado por agua para tanques estacionarios superficiales de gas licuado de petróleo a fin de detectar fugas fortuitas de gas e incremento en la temperatura, que fue monitoreada en tiempo real por medio de una red LAN a través de una página HTML en la que se pudo visualizar los valores de los sensores y actuadores que conforman el sistema. La metodología aplicada para esta investigación fue el de modelamiento. El resultado de esta investigación fue satisfactorio ya que se pudo comprobar que el sistema propuesto permite que los tanques se encuentren en el rango adecuado de temperatura y detecte las posibles fugas de gas. El sistema propuesto se encuentra diseñado cumpliendo las diferentes normas nacionales e internacionales que OSINERGMIN exige para el uso de este tipo de hidrocarburo. Palabras Prototipo electrónico, tanques, monitoreo, HTML, sensores, actuadores, temperatura y fugas de gas.
Key words: Prototipo electrónico, tanques, monitoreo, HTML, sensores, actuadores, temperatura y fugas de gas.
Diseño e implementación de un prototipo de detección de proximidad orientado a establecimientos comerciales, basado en un sistema de localización (LS) utilizando tecnología bluetooth de baja energía (BLE) e inteligencia artificial
DESARROLLO DE UN SISTEMA BIOMÉTRICO ORIENTADO AL RECONOCIMIENTO DE PERSONAS A PARTIR DE LOS PLIEGUES PALMARES UTILIZANDO PROCESAMIENTO DIGITAL DE IMÁGENES Y REDES NEURONALES CONVOLUCIONALES
DESAROOLLO DE UN EQUIPO ELECTRÓNICO DE IDENTIFICACIÓN POR COLORES Y DOSIFICACIÓN AUTOMÁTICA DE ALIMENTOS PARA MARRANAS GESTANTES Y CERDOS JÓVENES UTILIZANDO UN COMPUTADOR DE PLACA REDUCIDA Y ALGORITMOS DE PROCESAMIENTO DIGITAL DE IMÁGENES , 2019
DISEÑO DE UN PROTOTIPO LOW COST DE ELECTROESTIMULADOR TENS-EMS ORIENTADO A MEJORAR EL PROCESO DE REHABILITACIÓN DE PERSONAS QUE PADECEN DE ENFERMEDADES MUSCULARES
DESARROLLO DE UN SISTEMA ELECTRÓNICO PARA LA DETERMINACIÓN DEL UMBRAL AUDITIVO POR CONDUCCIÓN AÉREA, ÓSEA Y CON PRUEBAS DE DETECCIÓN DEL HABLA, 2018
Un vehículo aéreo no tripulado, conocido también como drone, es una aeronave que se caracteriza p... more Un vehículo aéreo no tripulado, conocido también como drone, es una aeronave que se caracteriza por la ausencia de un piloto humano a bordo. Los drones han tenido importancia desde ya más de una década. En la actualidad tienen aplicaciones tanto académicas como industriales. Para la presente tesis se basa en un drone tipo cuadrocóptero, que se caracteriza por sustentar gracias a sus cuatro motores. Este, desde un punto de vista ingenieril, se trata de un sistema altamente no lineal que presenta perturbaciones y ruido que no permiten tener un estabilidad en pleno vuelo. Esta aeronave tiene un costo amigable; por eso, ha sido tratado como mesa de prueba para la elaboración de controladores avanzados, por lo que se piensa diseñar un regulador cuadrático gaussiano LQG con control neuronal para un prototipo cuadrocóptero. Para ello, se requiere un estudio previo de las redes neuronales aplicadas a la teoría de control; el modelamiento directo, el cual se basa en las ecuaciones diferenciales que gobiernan la dinámica de la aeronave; el modelamiento inverso, el cual pasa por un proceso de identificación de sistema basado en el modelo paramétrico autorregresivo y que gracias a la red neuronal se podrá identificar usando el algoritmo de aprendizaje de retropropagación o backpropagation. El controlador LQG es un controlador avanzado, por lo que se piensa importar a manera de código para que la red pueda emularlo y, de esa manera obtener el control neuronal. Se quiere obtener el control de los ángulos de inclinación del cuadrocóptero con el fin de mantenerlo estable en un punto determinado; por eso, se tiene un sistema regulador. Como etapa de prueba se realiza la simulación. Se hacen cálculos teóricos para poder comparar y calibrar los resultados obtenidos por el modelamiento inverso.
Uploads
Papers by Fernando M Jimenez
In this RESEARCH, We will model and design a self organizing neural network for the mapping and clustering of three-dimensional structures of 3D data and vector signals. A Self Organizing Feature Map (SOFM) is a type of artificial neural network (ANN), which trains with unsupervised learning to produce a discretized representation and low-dimensional (usually two dimensional) space entry training samples. Self-organizing maps are different from other artificial neural networks in the sense that they use in their computational clustering a neighborhood function to preserve the topological properties of the input space.
SYSTEMS ENGINEERING In-depth running case
The city of Lima is home to 8,693,387 residents as of January 2014, according to the Peruvian National Institute of Statistics and Informatics (INEI by its name in Spanish). The total population in all 43 of the capital's districts is expected to be around 8,755,262, representing 28.4 percent of the country's 30.8 million people.
Lima’s transportation system is a fragmented, loosely regulated and very chaotic complex system. With such a populated city, public transportation is a must, but Lima's public transportation system is insufficient and disorganized.
The public bus system in Lima is a bewildering mixture of formal and informal, and virtually devoid of any real accountability. Drivers are essentially free agents, assigned to routes by concession holders who have city-issued permits that enable them to operate buses on a designated route.
The cutthroat competition, coupled with ever-worsening congestion, results in thousands of accidents each year, and hours-long commutes for the roughy 80 percent of residents who depend on public transportation. Even among South American cities, Lima is infamous for its traffic issues. Chaotic congestion, high rates of fatalities, and a deregulated, confusing transportation network are all hallmarks of the Peruvian capital's urban landscape.
Objective: to apply course learning, INCOSE and NASA systems Engineering Handbooks guidelines to search for a solution to a real-world complex systems engineering scenario.
This case will provide the student with exposure to as well as familiarity with contributing ideas in a technical discussion.
The case will be structured using the Friedman-Sage framework (Friedman and Sage 2003; Friedman and Sage 2004), which decomposes a case in the following concept areas:
SYSTEMS ENGINEERING In-depth running case
The city of Lima is home to 8,693,387 residents as of January 2014, according to the Peruvian National Institute of Statistics and Informatics (INEI by its name in Spanish). The total population in all 43 of the capital's districts is expected to be around 8,755,262, representing 28.4 percent of the country's 30.8 million people.
Lima’s transportation system is a fragmented, loosely regulated and very chaotic complex system. With such a populated city, public transportation is a must, but Lima's public transportation system is insufficient and disorganized.
The public bus system in Lima is a bewildering mixture of formal and informal, and virtually devoid of any real accountability. Drivers are essentially free agents, assigned to routes by concession holders who have city-issued permits that enable them to operate buses on a designated route.
The cutthroat competition, coupled with ever-worsening congestion, results in thousands of accidents each year, and hours-long commutes for the roughy 80 percent of residents who depend on public transportation. Even among South American cities, Lima is infamous for its traffic issues. Chaotic congestion, high rates of fatalities, and a deregulated, confusing transportation network are all hallmarks of the Peruvian capital's urban landscape.
Objective: to apply course learning, INCOSE and NASA systems Engineering Handbooks guidelines to search for a solution to a real-world complex systems engineering scenario.
This case will provide the student with exposure to as well as familiarity with contributing ideas in a technical discussion.
The case will be structured using the Friedman-Sage framework (Friedman and Sage 2003; Friedman and Sage 2004), which decomposes a case in the following concept areas:
Sistema de Control por Auto Organización basado en la Red Neuronal de Retropropagación , Red Neuronal Identificadora y la Red Neuronal del Controlador, etapa de Conteo de Vehículos, patrones de tráfico y lsensores.
Thesis Chapters by Fernando M Jimenez
Key words: Prototipo electrónico, tanques, monitoreo, HTML, sensores, actuadores, temperatura y fugas de gas.
In this RESEARCH, We will model and design a self organizing neural network for the mapping and clustering of three-dimensional structures of 3D data and vector signals. A Self Organizing Feature Map (SOFM) is a type of artificial neural network (ANN), which trains with unsupervised learning to produce a discretized representation and low-dimensional (usually two dimensional) space entry training samples. Self-organizing maps are different from other artificial neural networks in the sense that they use in their computational clustering a neighborhood function to preserve the topological properties of the input space.
SYSTEMS ENGINEERING In-depth running case
The city of Lima is home to 8,693,387 residents as of January 2014, according to the Peruvian National Institute of Statistics and Informatics (INEI by its name in Spanish). The total population in all 43 of the capital's districts is expected to be around 8,755,262, representing 28.4 percent of the country's 30.8 million people.
Lima’s transportation system is a fragmented, loosely regulated and very chaotic complex system. With such a populated city, public transportation is a must, but Lima's public transportation system is insufficient and disorganized.
The public bus system in Lima is a bewildering mixture of formal and informal, and virtually devoid of any real accountability. Drivers are essentially free agents, assigned to routes by concession holders who have city-issued permits that enable them to operate buses on a designated route.
The cutthroat competition, coupled with ever-worsening congestion, results in thousands of accidents each year, and hours-long commutes for the roughy 80 percent of residents who depend on public transportation. Even among South American cities, Lima is infamous for its traffic issues. Chaotic congestion, high rates of fatalities, and a deregulated, confusing transportation network are all hallmarks of the Peruvian capital's urban landscape.
Objective: to apply course learning, INCOSE and NASA systems Engineering Handbooks guidelines to search for a solution to a real-world complex systems engineering scenario.
This case will provide the student with exposure to as well as familiarity with contributing ideas in a technical discussion.
The case will be structured using the Friedman-Sage framework (Friedman and Sage 2003; Friedman and Sage 2004), which decomposes a case in the following concept areas:
SYSTEMS ENGINEERING In-depth running case
The city of Lima is home to 8,693,387 residents as of January 2014, according to the Peruvian National Institute of Statistics and Informatics (INEI by its name in Spanish). The total population in all 43 of the capital's districts is expected to be around 8,755,262, representing 28.4 percent of the country's 30.8 million people.
Lima’s transportation system is a fragmented, loosely regulated and very chaotic complex system. With such a populated city, public transportation is a must, but Lima's public transportation system is insufficient and disorganized.
The public bus system in Lima is a bewildering mixture of formal and informal, and virtually devoid of any real accountability. Drivers are essentially free agents, assigned to routes by concession holders who have city-issued permits that enable them to operate buses on a designated route.
The cutthroat competition, coupled with ever-worsening congestion, results in thousands of accidents each year, and hours-long commutes for the roughy 80 percent of residents who depend on public transportation. Even among South American cities, Lima is infamous for its traffic issues. Chaotic congestion, high rates of fatalities, and a deregulated, confusing transportation network are all hallmarks of the Peruvian capital's urban landscape.
Objective: to apply course learning, INCOSE and NASA systems Engineering Handbooks guidelines to search for a solution to a real-world complex systems engineering scenario.
This case will provide the student with exposure to as well as familiarity with contributing ideas in a technical discussion.
The case will be structured using the Friedman-Sage framework (Friedman and Sage 2003; Friedman and Sage 2004), which decomposes a case in the following concept areas:
Sistema de Control por Auto Organización basado en la Red Neuronal de Retropropagación , Red Neuronal Identificadora y la Red Neuronal del Controlador, etapa de Conteo de Vehículos, patrones de tráfico y lsensores.
Key words: Prototipo electrónico, tanques, monitoreo, HTML, sensores, actuadores, temperatura y fugas de gas.
Our thesis combines algorithms for digital processing signal with proprietary algorithms to recognize barcodes using a mobile device with the Android® operating system, which is one of the most popular operating systems on the market comparable with iOS® from Apple® and Microsoft Mobile® from Microsoft®.
Fuzzy logic is a methodology that provides a simple and elegant way to draw a conclusion from information vague, ambiguous, inaccurate, garbled or incomplete entry. Overall fuzzy logic mimics a person makes decisions based on information such features.
The need to emulate human behavior in all organizations has increased rapidly, so this thesis focuses on decision making, emulating the expert judgment of the logistics supervisor in the supply chain, exactly the stage and pick up materials / or equipment.
The proposal of this thesis is to optimize the pickup stage of materials and / or replacing equipment logistics supervisor routine tasks through control points (sensors) through a "controller" governed by Fuzzy Logic (design thesis) that send a series of alerts that will help improve the work done at this stage. By streamlining the tasks of this phase it is expected to significantly reduce delivery times and reduce operating costs.
Here is the basic design for the bridge structure:
We are going to analyze the structure using a defined coordinate system, a free body diagram
of the whole bridge and set the equations required to stay in equilibrium when an equality
distributed load is applied.