1. Studies have shown that adenosine transport and adenosine A1 receptors in rat brain are subjec... more 1. Studies have shown that adenosine transport and adenosine A1 receptors in rat brain are subjected to regulation by thyroid hormone levels. Since the ectonucleotidase pathway is an important source of adenosine extracellular, in the present study the in vitro action of T3 and T4 hormones on ectonucleotidase activities in hippocampal synaptosomes was evaluated. 2. T3 (Triiodo-l-thyronine) significantly inhibited, in an uncompetitive manner, the ATP and ADP hydrolysis promoted by ATP diphosphohydrolase activity in hippocampal synaptosomes of adult rats. 3. In contrast, T4 (Thyroxine) only inhibited ATP hydrolysis in an uncompetitive mechanism, at the concentrations tested (100-500 microM), but at the same time did not affect ADP hydrolysis. 4. In the present study, we also investigate the in vitro effect of T3 and T4 on 5'-nucleotidase activity. However, there are no changes in the activity of this enzyme in the presence of T3 and T4 in the hippocampal synaptosomes of rats. 5. T...
Several lines of evidence indicate that ATP may play an important role in Long-Term Potentiation.... more Several lines of evidence indicate that ATP may play an important role in Long-Term Potentiation. In this investigation we evaluated the effect of a memory task (step-down inhibitory avoidance) on the synaptosomal ecto-enzymes (ATP diphosphohydrolase and 5'-nucleotidase) involved in the degradation of ATP to adenosine. After the training session, a decrease in the ATPase (40%) and ADPase (29%) activities of ATP diphosphohydrolase as well as was a decrease in 5'-nucleotidase activity (31%) was observed in hippocampal synaptosomes of rats trained and killed immediately after training. In synaptosomes of rats killed 30 minutes after training, a decrease in ATPase activity (28%) was observed. In the test session, no significant changes were observed in the enzyme activities studied. These results provide new information about the activity of ecto-enzymes involved in nucleotide degradation and their possible participation in mechanisms of acquisition and modulation of memory proc...
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 2014
Superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest in nanomedicine due to ... more Superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest in nanomedicine due to their capability to act simultaneously as a contrast agent and as a targeted drug delivery system. At present, one of the biggest concerns about the use of SPIONs remains around its toxicity and, for this reason, it is important to establish the safe upper limit for each use. In the present study, SPION coated with cross-linked aminated dextran (CLIO-NH₂) were synthesized and their toxicity to zebrafish brain was investigated. We have evaluated the effect of different CLIO-NH₂ doses (20, 50, 100, 140 and 200 mg/kg) as a function of time after exposure (one, 16, 24 and 48 h) on AChE activity and ache expression in zebrafish brain. The animals exposed to 200 mg/kg and tested 24 h after administration of the nanoparticles have shown decreased AChE activity, reduction in the exploratory performance, significantly higher level of ferric iron in the brains and induction of casp8, casp 9 and ju...
Comparative Biochemistry and Physiology B-biochemistry & Molecular Biology, 2004
Nucleotide-metabolizing enzymes play an important role in the regulation of nucleotide levels. In... more Nucleotide-metabolizing enzymes play an important role in the regulation of nucleotide levels. In the present report, we demonstrated an enzyme activity with different kinetic properties in membrane preparations of the nervous ganglia and digestive gland from Helix aspersa. ATPase and ADPase activities were dependent on Ca2+ and Mg2+ with pH optima approximately 7.2 and between 6.0 and 8.0 in digestive
Adenosine acting on A1 receptors has been related with neuroprotective and neuromodulatory action... more Adenosine acting on A1 receptors has been related with neuroprotective and neuromodulatory actions, protection against oxidative stress and decrease of anxiety and nociceptive signaling. Previous studies demonstrated an inhibition of the enzymes that hydrolyze ATP to adenosine in the rat central nervous system after hyperthyroidism induction. Manifestations of hyperthyroidism include increased anxiety, nervousness, high O2 consumption and physical hyperactivity. Here,
Hypermethioninemic patients may exhibit different neurological dysfunctions, and the mechanisms u... more Hypermethioninemic patients may exhibit different neurological dysfunctions, and the mechanisms underlying these pathologies remain obscure. Glutamate and ATP are important excitatory neurotransmitters co-released at synaptic clefts, and whose activities are intrinsically related. Adenosine-the final product of ATP breakdown-is also an important neuromodulator. Here, we investigated the effects of long-term (7-day) exposure to 1.5 or 3 mM methionine (Met) on glutamate uptake in brain tissues (telencephalon, optic tectum, and cerebellum) and on ATP, ADP, and AMP catabolism by ecto-nucleotidases found in brain membrane samples, using a zebrafish model. Also, we evaluated the expression of ecto-nucleotidase (ntdp1, ntdp2mg, ntdp2mq, ntdp2mv, ntdp3, and nt5e) and adenosine receptor (adora1, adora2aa, adora2ab, adora2b) genes in the brain of zebrafish exposed to Met. In animals exposed to 3.0 mM Met, glutamate uptake in the telencephalon decreased significantly. Also, ATP and ADP (but not AMP) catabolism decreased significantly at both Met concentrations tested. The messenger RNA (mRNA) levels of ntpd genes and of the adenosine receptors adora1 and adora2aa increased significantly after Met exposure. In contrast, adora2ab mRNA levels decreased after Met exposure. Our data suggest that glutamate and ATP accumulate at synaptic clefts after Met exposure, with potential detrimental effects to the nervous system. This phenomenon might explain, at least in part, the increased susceptibility of hypermethioninemic patients to neurological symptoms.
1. Studies have shown that adenosine transport and adenosine A1 receptors in rat brain are subjec... more 1. Studies have shown that adenosine transport and adenosine A1 receptors in rat brain are subjected to regulation by thyroid hormone levels. Since the ectonucleotidase pathway is an important source of adenosine extracellular, in the present study the in vitro action of T3 and T4 hormones on ectonucleotidase activities in hippocampal synaptosomes was evaluated. 2. T3 (Triiodo-l-thyronine) significantly inhibited, in an uncompetitive manner, the ATP and ADP hydrolysis promoted by ATP diphosphohydrolase activity in hippocampal synaptosomes of adult rats. 3. In contrast, T4 (Thyroxine) only inhibited ATP hydrolysis in an uncompetitive mechanism, at the concentrations tested (100-500 microM), but at the same time did not affect ADP hydrolysis. 4. In the present study, we also investigate the in vitro effect of T3 and T4 on 5'-nucleotidase activity. However, there are no changes in the activity of this enzyme in the presence of T3 and T4 in the hippocampal synaptosomes of rats. 5. T...
Several lines of evidence indicate that ATP may play an important role in Long-Term Potentiation.... more Several lines of evidence indicate that ATP may play an important role in Long-Term Potentiation. In this investigation we evaluated the effect of a memory task (step-down inhibitory avoidance) on the synaptosomal ecto-enzymes (ATP diphosphohydrolase and 5'-nucleotidase) involved in the degradation of ATP to adenosine. After the training session, a decrease in the ATPase (40%) and ADPase (29%) activities of ATP diphosphohydrolase as well as was a decrease in 5'-nucleotidase activity (31%) was observed in hippocampal synaptosomes of rats trained and killed immediately after training. In synaptosomes of rats killed 30 minutes after training, a decrease in ATPase activity (28%) was observed. In the test session, no significant changes were observed in the enzyme activities studied. These results provide new information about the activity of ecto-enzymes involved in nucleotide degradation and their possible participation in mechanisms of acquisition and modulation of memory proc...
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 2014
Superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest in nanomedicine due to ... more Superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest in nanomedicine due to their capability to act simultaneously as a contrast agent and as a targeted drug delivery system. At present, one of the biggest concerns about the use of SPIONs remains around its toxicity and, for this reason, it is important to establish the safe upper limit for each use. In the present study, SPION coated with cross-linked aminated dextran (CLIO-NH₂) were synthesized and their toxicity to zebrafish brain was investigated. We have evaluated the effect of different CLIO-NH₂ doses (20, 50, 100, 140 and 200 mg/kg) as a function of time after exposure (one, 16, 24 and 48 h) on AChE activity and ache expression in zebrafish brain. The animals exposed to 200 mg/kg and tested 24 h after administration of the nanoparticles have shown decreased AChE activity, reduction in the exploratory performance, significantly higher level of ferric iron in the brains and induction of casp8, casp 9 and ju...
Comparative Biochemistry and Physiology B-biochemistry & Molecular Biology, 2004
Nucleotide-metabolizing enzymes play an important role in the regulation of nucleotide levels. In... more Nucleotide-metabolizing enzymes play an important role in the regulation of nucleotide levels. In the present report, we demonstrated an enzyme activity with different kinetic properties in membrane preparations of the nervous ganglia and digestive gland from Helix aspersa. ATPase and ADPase activities were dependent on Ca2+ and Mg2+ with pH optima approximately 7.2 and between 6.0 and 8.0 in digestive
Adenosine acting on A1 receptors has been related with neuroprotective and neuromodulatory action... more Adenosine acting on A1 receptors has been related with neuroprotective and neuromodulatory actions, protection against oxidative stress and decrease of anxiety and nociceptive signaling. Previous studies demonstrated an inhibition of the enzymes that hydrolyze ATP to adenosine in the rat central nervous system after hyperthyroidism induction. Manifestations of hyperthyroidism include increased anxiety, nervousness, high O2 consumption and physical hyperactivity. Here,
Hypermethioninemic patients may exhibit different neurological dysfunctions, and the mechanisms u... more Hypermethioninemic patients may exhibit different neurological dysfunctions, and the mechanisms underlying these pathologies remain obscure. Glutamate and ATP are important excitatory neurotransmitters co-released at synaptic clefts, and whose activities are intrinsically related. Adenosine-the final product of ATP breakdown-is also an important neuromodulator. Here, we investigated the effects of long-term (7-day) exposure to 1.5 or 3 mM methionine (Met) on glutamate uptake in brain tissues (telencephalon, optic tectum, and cerebellum) and on ATP, ADP, and AMP catabolism by ecto-nucleotidases found in brain membrane samples, using a zebrafish model. Also, we evaluated the expression of ecto-nucleotidase (ntdp1, ntdp2mg, ntdp2mq, ntdp2mv, ntdp3, and nt5e) and adenosine receptor (adora1, adora2aa, adora2ab, adora2b) genes in the brain of zebrafish exposed to Met. In animals exposed to 3.0 mM Met, glutamate uptake in the telencephalon decreased significantly. Also, ATP and ADP (but not AMP) catabolism decreased significantly at both Met concentrations tested. The messenger RNA (mRNA) levels of ntpd genes and of the adenosine receptors adora1 and adora2aa increased significantly after Met exposure. In contrast, adora2ab mRNA levels decreased after Met exposure. Our data suggest that glutamate and ATP accumulate at synaptic clefts after Met exposure, with potential detrimental effects to the nervous system. This phenomenon might explain, at least in part, the increased susceptibility of hypermethioninemic patients to neurological symptoms.
Uploads
Papers by Carla Denise Bonan