ASME 2012 International Manufacturing Science and Engineering Conference, 2012
ABSTRACT We report a method to half-embed nanoparticles into metallic materials. Transparent and ... more ABSTRACT We report a method to half-embed nanoparticles into metallic materials. Transparent and opaque nanoparticle (laser wavelength 1064 nm) were both successfully half-embedded (partial part of nanoparticles embedded into matrix while other parts still stay above the matrix) into metallic materials. Nanoparticles were coated on sample surface by dip coating before laser irradiation. After laser irradiation of different pulses and laser fluencies, nanoparticles were embedded into metal. The mechanism and process of embedding were investigated.
In this study, an innovative materials processing technique, cryogenic laser shock peening (CLSP)... more In this study, an innovative materials processing technique, cryogenic laser shock peening (CLSP), is investigated. Copper is processed by laser shock peening (LSP) at the cryogenic temperature and compared with LSP at room temperature (RT-LSP). The microstructure of copper after processing is characterized by transmission electron microscopy (TEM). Nanotwins were observed in copper after CLSP due to the effect of cryogenic temperature. In addition, more energy is stored in the material as defects ( ...
ASME 2012 International Manufacturing Science and Engineering Conference, 2012
ABSTRACT We report a method to half-embed nanoparticles into metallic materials. Transparent and ... more ABSTRACT We report a method to half-embed nanoparticles into metallic materials. Transparent and opaque nanoparticle (laser wavelength 1064 nm) were both successfully half-embedded (partial part of nanoparticles embedded into matrix while other parts still stay above the matrix) into metallic materials. Nanoparticles were coated on sample surface by dip coating before laser irradiation. After laser irradiation of different pulses and laser fluencies, nanoparticles were embedded into metal. The mechanism and process of embedding were investigated.
In this study, an innovative materials processing technique, cryogenic laser shock peening (CLSP)... more In this study, an innovative materials processing technique, cryogenic laser shock peening (CLSP), is investigated. Copper is processed by laser shock peening (LSP) at the cryogenic temperature and compared with LSP at room temperature (RT-LSP). The microstructure of copper after processing is characterized by transmission electron microscopy (TEM). Nanotwins were observed in copper after CLSP due to the effect of cryogenic temperature. In addition, more energy is stored in the material as defects ( ...
Uploads
Papers by Dong Lin