My research interest and passion is in volcanism and the various ways volcanic activity has had an impact on Earth, its evolution, environment and atmosphere. This has taken me to all parts of the globe to see and work in beautiful places for both pure and applied research projects. Two particular areas of research focus are: 1) the largest igneous events in Earth history (known as Large Igneous Provinces), which have been linked to major biological extinctions and environmental/climatic change in Earth’s history as well as fundamental to major tectonic events such as the breakup of continents and the generation of mineral, and energy/hydrocarbon resources; and 2) Volcanic-Biotic Interactions, in particular floating masses of pumice (pumice rafts) produced by explosive volcanic eruptions – these have been important in dispersing a wide variety of marine biota over long distances (1,000’s km) and are potentially vital to contributing to the long-term resilience of coral reefs in our region.
The sedimentary structures, chemistry, and mineralogy of strata at both MER landing sites can be ... more The sedimentary structures, chemistry, and mineralogy of strata at both MER landing sites can be plausibly interpreted in terms of impact processes on Mars. Many layered sequences imaged from orbit may also have an impacto-clastic origin.
Journal of Volcanology and Geothermal Research, 2000
... Pumice fall stratigraphy is best represented at locations close to the dispersal axis, for ex... more ... Pumice fall stratigraphy is best represented at locations close to the dispersal axis, for example, between the towns of San Isidro, Chimiche and Granadilla. ... This is thought to result from the fallout of aggregates or clumps of moist ash or accretionary lapilli ( Sparks et al., 1981). ...
Zircon- and bulk-rock Zr-based thermometric parameters have become fundamental to petrogenetic mo... more Zircon- and bulk-rock Zr-based thermometric parameters have become fundamental to petrogenetic models of magmatism, from which broader geochronological and tectonic implications are being made. In particular, petrogenetic models have become increasingly reliant on Ti concentration in zircon geothermometry (TZircTi) and zircon saturation temperature (TZircsat). A feature of many of these studies is an implicit assumption that all zircons present in the host igneous rock are autocrystic, that is, crystallised from the surrounding melt. However, it has long been recognised that zircons present in an igneous rock can be inherited either from the surrounding country rock or source region (xenocrysts), or from earlier phases of magmatism or the magmatic plumbing system (antecrysts). Distinguishing these different origins for zircon crystals or domains within crystals is not straightforward.
Here, we first review the utility and reliability of zircon-based thermometers for petrogenetic studies and show that TZircsat is a theoretical temperature and cannot be used to constrain magmatic or partial melting temperatures. It is a dynamic variable that changes during magma crystallisation, and essentially increases as fractional crystallisation proceeds, whereas true magmatic temperatures (TMagma) decrease. Generally, in Temperature-SiO2 space, the cross-over point of these two temperatures is magmatic system dependent, and also affected by the type of calibration used for the TZircsat calculations. Consequently, each magmatic system needs to be evaluated independently to assess the validity and usefulness of TZircsat. A fundamental conclusion of TZircsat and TMagma relationships assessed here is that new zircon generally only crystallises in silicic (granitic/rhyolitic) melt compositions, and thus autocrystic zircons should not be assumed to be present in igneous rocks with bulk compositions < 64 wt% SiO2, although inherited and minor zircons crystallising from late-stage differentiated melt pockets can be present. This highlights the importance of discriminating autocrystic from inherited zircons in igneous rocks.
We then review techniques available to discriminate autocrystic from inherited zircons, and propose a new methodology to assist in the identification of autocrystic zircons for emplacement age determination and separate evaluation of inherited zircon components. The approach uses two strands of data: 1) zircon data such as zircon morphologies, textures, compositions and U-Pb ages, and 2) whole-rock data, in particular SiO2 and coupled geothermometry (TZircsat and TMagma) to estimate whether the magma was zircon-saturated or undersaturated. To test this new protocol, we use as examples, several Phanerozoic granitic rocks intersected by drilling in Queensland where contextual information is limited, and show how antecrystic and xenocrystic zircons and monazites can be distinguished. In contrast, where zircons are metamict (for example, high U and Th-rich zircons), much of the ability to discriminate is impacted because such zircons have suffered Pb loss and have modified compositions (e.g., higher TZircTi). We recommend an integrated approach incorporating whole-rock chemistry, independent geothermometric constraints, zircon composition, textures and ages obtained by routine cathodoluminescence and LA-ICP-MS or ion microprobe analysis to provide increased confidence for the discrimination of inherited zircons from autocrystic zircons and determination of the emplacement age.
The sedimentary structures, chemistry, and mineralogy of strata at both MER landing sites can be ... more The sedimentary structures, chemistry, and mineralogy of strata at both MER landing sites can be plausibly interpreted in terms of impact processes on Mars. Many layered sequences imaged from orbit may also have an impacto-clastic origin.
Journal of Volcanology and Geothermal Research, 2000
... Pumice fall stratigraphy is best represented at locations close to the dispersal axis, for ex... more ... Pumice fall stratigraphy is best represented at locations close to the dispersal axis, for example, between the towns of San Isidro, Chimiche and Granadilla. ... This is thought to result from the fallout of aggregates or clumps of moist ash or accretionary lapilli ( Sparks et al., 1981). ...
Zircon- and bulk-rock Zr-based thermometric parameters have become fundamental to petrogenetic mo... more Zircon- and bulk-rock Zr-based thermometric parameters have become fundamental to petrogenetic models of magmatism, from which broader geochronological and tectonic implications are being made. In particular, petrogenetic models have become increasingly reliant on Ti concentration in zircon geothermometry (TZircTi) and zircon saturation temperature (TZircsat). A feature of many of these studies is an implicit assumption that all zircons present in the host igneous rock are autocrystic, that is, crystallised from the surrounding melt. However, it has long been recognised that zircons present in an igneous rock can be inherited either from the surrounding country rock or source region (xenocrysts), or from earlier phases of magmatism or the magmatic plumbing system (antecrysts). Distinguishing these different origins for zircon crystals or domains within crystals is not straightforward.
Here, we first review the utility and reliability of zircon-based thermometers for petrogenetic studies and show that TZircsat is a theoretical temperature and cannot be used to constrain magmatic or partial melting temperatures. It is a dynamic variable that changes during magma crystallisation, and essentially increases as fractional crystallisation proceeds, whereas true magmatic temperatures (TMagma) decrease. Generally, in Temperature-SiO2 space, the cross-over point of these two temperatures is magmatic system dependent, and also affected by the type of calibration used for the TZircsat calculations. Consequently, each magmatic system needs to be evaluated independently to assess the validity and usefulness of TZircsat. A fundamental conclusion of TZircsat and TMagma relationships assessed here is that new zircon generally only crystallises in silicic (granitic/rhyolitic) melt compositions, and thus autocrystic zircons should not be assumed to be present in igneous rocks with bulk compositions < 64 wt% SiO2, although inherited and minor zircons crystallising from late-stage differentiated melt pockets can be present. This highlights the importance of discriminating autocrystic from inherited zircons in igneous rocks.
We then review techniques available to discriminate autocrystic from inherited zircons, and propose a new methodology to assist in the identification of autocrystic zircons for emplacement age determination and separate evaluation of inherited zircon components. The approach uses two strands of data: 1) zircon data such as zircon morphologies, textures, compositions and U-Pb ages, and 2) whole-rock data, in particular SiO2 and coupled geothermometry (TZircsat and TMagma) to estimate whether the magma was zircon-saturated or undersaturated. To test this new protocol, we use as examples, several Phanerozoic granitic rocks intersected by drilling in Queensland where contextual information is limited, and show how antecrystic and xenocrystic zircons and monazites can be distinguished. In contrast, where zircons are metamict (for example, high U and Th-rich zircons), much of the ability to discriminate is impacted because such zircons have suffered Pb loss and have modified compositions (e.g., higher TZircTi). We recommend an integrated approach incorporating whole-rock chemistry, independent geothermometric constraints, zircon composition, textures and ages obtained by routine cathodoluminescence and LA-ICP-MS or ion microprobe analysis to provide increased confidence for the discrimination of inherited zircons from autocrystic zircons and determination of the emplacement age.
Uploads
Papers by Scott Bryan
Here, we first review the utility and reliability of zircon-based thermometers for petrogenetic studies and show that TZircsat is a theoretical temperature and cannot be used to constrain magmatic or partial melting temperatures. It is a dynamic variable that changes during magma crystallisation, and essentially increases as fractional crystallisation proceeds, whereas true magmatic temperatures (TMagma) decrease. Generally, in Temperature-SiO2 space, the cross-over point of these two temperatures is magmatic system dependent, and also affected by the type of calibration used for the TZircsat calculations. Consequently, each magmatic system needs to be evaluated independently to assess the validity and usefulness of TZircsat. A fundamental conclusion of TZircsat and TMagma relationships assessed here is that new zircon generally only crystallises in silicic (granitic/rhyolitic) melt compositions, and thus autocrystic zircons should not be assumed to be present in igneous rocks with bulk compositions < 64 wt% SiO2, although inherited and minor zircons crystallising from late-stage differentiated melt pockets can be present. This highlights the importance of discriminating autocrystic from inherited zircons in igneous rocks.
We then review techniques available to discriminate autocrystic from inherited zircons, and propose a new methodology to assist in the identification of autocrystic zircons for emplacement age determination and separate evaluation of inherited zircon components. The approach uses two strands of data: 1) zircon data such as zircon morphologies, textures, compositions and U-Pb ages, and 2) whole-rock data, in particular SiO2 and coupled geothermometry (TZircsat and TMagma) to estimate whether the magma was zircon-saturated or undersaturated. To test this new protocol, we use as examples, several Phanerozoic granitic rocks intersected by drilling in Queensland where contextual information is limited, and show how antecrystic and xenocrystic zircons and monazites can be distinguished. In contrast, where zircons are metamict (for example, high U and Th-rich zircons), much of the ability to discriminate is impacted because such zircons have suffered Pb loss and have modified compositions (e.g., higher TZircTi). We recommend an integrated approach incorporating whole-rock chemistry, independent geothermometric constraints, zircon composition, textures and ages obtained by routine cathodoluminescence and LA-ICP-MS or ion microprobe analysis to provide increased confidence for the discrimination of inherited zircons from autocrystic zircons and determination of the emplacement age.
Here, we first review the utility and reliability of zircon-based thermometers for petrogenetic studies and show that TZircsat is a theoretical temperature and cannot be used to constrain magmatic or partial melting temperatures. It is a dynamic variable that changes during magma crystallisation, and essentially increases as fractional crystallisation proceeds, whereas true magmatic temperatures (TMagma) decrease. Generally, in Temperature-SiO2 space, the cross-over point of these two temperatures is magmatic system dependent, and also affected by the type of calibration used for the TZircsat calculations. Consequently, each magmatic system needs to be evaluated independently to assess the validity and usefulness of TZircsat. A fundamental conclusion of TZircsat and TMagma relationships assessed here is that new zircon generally only crystallises in silicic (granitic/rhyolitic) melt compositions, and thus autocrystic zircons should not be assumed to be present in igneous rocks with bulk compositions < 64 wt% SiO2, although inherited and minor zircons crystallising from late-stage differentiated melt pockets can be present. This highlights the importance of discriminating autocrystic from inherited zircons in igneous rocks.
We then review techniques available to discriminate autocrystic from inherited zircons, and propose a new methodology to assist in the identification of autocrystic zircons for emplacement age determination and separate evaluation of inherited zircon components. The approach uses two strands of data: 1) zircon data such as zircon morphologies, textures, compositions and U-Pb ages, and 2) whole-rock data, in particular SiO2 and coupled geothermometry (TZircsat and TMagma) to estimate whether the magma was zircon-saturated or undersaturated. To test this new protocol, we use as examples, several Phanerozoic granitic rocks intersected by drilling in Queensland where contextual information is limited, and show how antecrystic and xenocrystic zircons and monazites can be distinguished. In contrast, where zircons are metamict (for example, high U and Th-rich zircons), much of the ability to discriminate is impacted because such zircons have suffered Pb loss and have modified compositions (e.g., higher TZircTi). We recommend an integrated approach incorporating whole-rock chemistry, independent geothermometric constraints, zircon composition, textures and ages obtained by routine cathodoluminescence and LA-ICP-MS or ion microprobe analysis to provide increased confidence for the discrimination of inherited zircons from autocrystic zircons and determination of the emplacement age.