Теория ожидаемой полезности
В экономической науке, теории игр, теории принятия решений теория ожидаемой полезности — альтернатива математическому ожиданию, формула, которая может использоваться рациональным игроком при принятии решений.
Смысл гипотезы
[править | править код]Рациональный игрок при выборе решения пытается максимизировать некоторую величину (благо); кажется естественным в качестве такой величины использовать математическое ожидание блага, появляющегося в результате избранного решения. Однако опыт показывает, что в реальной жизни многие участники лотерей выбирают решение с меньшим математическим ожиданием, но и с меньшим риском. Например, поставленные перед выбором получить тысячу рублей с вероятностью 0,2 % (математическое ожидание — 2 рубля) или получить один рубль с вероятностью 100 % (математическое ожидание — 1 рубль), многие люди предпочтут гарантированную выплату, несмотря на её меньшее математическое ожидание. Для описания такого поведения и была придумана формула ожидаемой полезности.
История
[править | править код]В 1947 году вышло второе издание книги Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение», где впервые была изложена теория ожидаемой полезности. Новая теория возникла как дополнение к теории игр. В вводной главе книги, рассказывающей о применении теории игр в экономике, авторы кратко излагают основные положения экономической теории и предлагают новый метод для оценки полезности благ — именно здесь и была изложена аксиоматика теории ожидаемой полезности[1].
В 1948 году математик Леонард Сэвидж и экономист Милтон Фридмен разработали теорию отношения к риску. Они поделили людей на два типа: склонных к риску (любителей лотерей, азартных игр, рискованных инвестиций) и испытывающих неприятие к риску. Для склонных к риску возможность сыграть честную в лотерею оценивается выше, чем её достоверный эквивалент. Те же, кто испытывает неприятие к риску, наоборот ниже оценивают возможность сыграть в лотерею[1].
Аксиоматика теории ожидаемой полезности
[править | править код]Поведение рационального игрока в теории ожидаемой полезности основывается на четырёх аксиомах:
- Аксиома полноты. Для любых исходов , должно выполняться соотношение , или . То есть, при выборе между А и B игрок должен или предпочитать вариант А, или предпочитать вариант B, или ему должно быть всё равно.
- Аксиома транзитивности. Если и , то . То есть, если игроку A кажется лучше, чем B, а B — лучше, чем C, то для него A будет лучше, чем C.
- Аксиома независимости. Предположим, что и вероятность , тогда для любого C . То есть, если для игрока A лучше, чем B, то он предпочтёт замену B на А (с той же вероятностью p), независимо от третьей альтернативы C. Из четырёх аксиом эта — наиболее спорная.
- Аксиома непрерывности. Предположим, что , тогда можно представить в виде , где . То есть, если игроку вариант A нравится больше, чем B, а B — больше, чем C, то существует такая вероятность p, что игроку будет всё равно, получит ли он B гарантированно или положится на случай, который предоставит ему либо более полезный, чем B, вариант A с негарантированной вероятностью p, либо менее полезный C. В применении к примеру из начала этой статьи, при некоторой вероятности p игроку будет всё равно, получить ли ему гарантированную выплату суммы B (1 рубль) или сыграть в лотерею, в которой он может выиграть А (1000 рублей) с вероятностью p, но может и ничего не выиграть (C = 0 рублей).
Выводы из теории ожидаемой полезности
[править | править код]В предположении, что аксиомы выполняются, а благо аддитивное, предпочтения рационального игрока будут определяться сравнительно простой формулой.
Функционал риска является линейным, таким образом полезность фон Неймана — Моргенштерна для благ можно представить в виде , где
Здесь — это i-й результат, а — его полезность.
Примечания
[править | править код]- ↑ 1 2 Кириякова Н. И. Теория ожидаемой полезности Архивная копия от 20 октября 2021 на Wayback Machine // Academy. 2015
Литература
[править | править код]- Дж. фон Нейман, О. Моргенштерн. Теория игр и экономическое поведение». — М.: «Наука», 1970. — 707 с.
См. также
[править | править код]В статье есть список источников, но не хватает сносок. |