Journal of the Royal Society, Interface / the Royal Society, 2008
This study quantifies the shape change in elephant manus and pes anatomy with increasing body mas... more This study quantifies the shape change in elephant manus and pes anatomy with increasing body mass, using computed tomographic scanning. Most manus and pes bones, and manus tendons, maintain their shape, or become more gracile, through ontogeny. Contrary to this, tendons of the pes become significantly more robust, suggesting functional adaptation to increasingly high loads. Ankle tendon cross-sectional area (CSA) scales the highest in the long digital extensor, proportional to body mass(1.08+/-0.21), significantly greater than the highest-scaling wrist tendon (extensor carpi ulnaris, body mass(0.69+/-0.09)). These patterns of shape change relate to the marked anatomical differences between the pillar-like manus and tripod-like pes, consistent with differences in fore- and hindlimb locomotor function. The cartilaginous predigits (prepollux and prehallux) of the manus and pes also become relatively more robust through ontogeny, and their pattern of shape change does not resemble that...
An adult male reticulated giraffe (Giraffa camelopardalis reticulata) was presented for postmorte... more An adult male reticulated giraffe (Giraffa camelopardalis reticulata) was presented for postmortem examination. During radiologic examination of the hindlimbs, osseous cyst-like lesions were detected in both medial femoral condyles. These lesions were subsequently examined macroscopically and histologically. The gross appearance suggested a diagnosis of bilateral osteochondrosis that was confirmed with histopathologic examination. This finding has not previously been reported in giraffes. Macroscopic visualization of the major limb joints, including the femorotibial joints, is therefore encouraged in future postmortem examinations of giraffes (Giraffa camelopardalis), and further assessment of clinical significance is required.
Journal of the Royal Society, Interface / the Royal Society, 2008
This study quantifies the shape change in elephant manus and pes anatomy with increasing body mas... more This study quantifies the shape change in elephant manus and pes anatomy with increasing body mass, using computed tomographic scanning. Most manus and pes bones, and manus tendons, maintain their shape, or become more gracile, through ontogeny. Contrary to this, tendons of the pes become significantly more robust, suggesting functional adaptation to increasingly high loads. Ankle tendon cross-sectional area (CSA) scales the highest in the long digital extensor, proportional to body mass(1.08+/-0.21), significantly greater than the highest-scaling wrist tendon (extensor carpi ulnaris, body mass(0.69+/-0.09)). These patterns of shape change relate to the marked anatomical differences between the pillar-like manus and tripod-like pes, consistent with differences in fore- and hindlimb locomotor function. The cartilaginous predigits (prepollux and prehallux) of the manus and pes also become relatively more robust through ontogeny, and their pattern of shape change does not resemble that...
An adult male reticulated giraffe (Giraffa camelopardalis reticulata) was presented for postmorte... more An adult male reticulated giraffe (Giraffa camelopardalis reticulata) was presented for postmortem examination. During radiologic examination of the hindlimbs, osseous cyst-like lesions were detected in both medial femoral condyles. These lesions were subsequently examined macroscopically and histologically. The gross appearance suggested a diagnosis of bilateral osteochondrosis that was confirmed with histopathologic examination. This finding has not previously been reported in giraffes. Macroscopic visualization of the major limb joints, including the femorotibial joints, is therefore encouraged in future postmortem examinations of giraffes (Giraffa camelopardalis), and further assessment of clinical significance is required.
Uploads
Papers by Chris Basu