Electric vehicles are widely regarded as pivotal in driving the sustainability of transportation networks forward, thanks to their capacity to diminish carbon emissions, enhance air quality, and bolster the robustness of electricity grids. The accessibility of charging infrastructure and the subjective norms that endorse electric mobility actively shape the electric vehicles acceptance. In this study, Our main goal is to provide off-grid electric vehicle charging infrastructures and the data communication protocols that connect to servers. We analyze the specifications of the OCPP (Open Charge Point Protocol) with an emphasis on its applicabillity for electric charging stations for vehicles. Our research concludes that off-grid electric vehicle charging systems can be effectively applied to small electric vehicles such as electric motorcycles, scooters, and bicycles. The OCPP data communication protocol can also support interactions between small electric vehicle charging stations and central server management systems (CSMS). Furthermore, we tested the electric vehicle charging process for a duration of two hours, and the charging station consistently produced stable voltage, current, and power output, matching the inverter outputs and fulfilling the specifications required by electric vehicle charging adapters. Analysis of throughput data indicates a positive correlation between the number of operational ports at a charging station and the volume of data processed by the server. However, beyond a certain threshold a decline in data transactions was observed, attributable to data loss.