Microalgal communities that colonize the hulls of at-risk vessels - those which have the highest ... more Microalgal communities that colonize the hulls of at-risk vessels - those which have the highest port residency times, lowest speeds, and most stationary time in water - are expected to change as a function of environmental factors during ocean voyages, but are rarely studied. The microalgal communities on the hull of an atypically operated ship, the T.S. Golden Bear, were quantified during the course of a voyage from San Francisco Bay to the South Pacific and back. Here we clearly demonstrate that microalgal communities can be highly resilient, and can survive physiologically strenuous journeys through extreme variation in salinity and temperature. A 42% reduction in microalgal biomass and a 62% reduction in algal cellular abundance indicated a community-wide negative reaction to an increase in both salinity and temperature after the ship left San Francisco Bay, CA and cruised southward to Long Beach, although in vivo cellular fluorescence capacity increased. Further reductions in ...
Many efforts to improve science teaching in higher education focus on a few faculty members at an... more Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty particip...
A laboratory study using the fish-killing raphidophyte Heterosigma akashiwo was conducted to exam... more A laboratory study using the fish-killing raphidophyte Heterosigma akashiwo was conducted to examine its capability to grow at salinities below oceanic, and to test the perceived relationship between reduced salinities and increased cytotoxicity. A non-axenic strain of H. akashiwo isolated from the U.S. Pacific Northwest was exposed to a combination of three salinity (32, 20 and 10) and five temperature (14.7, 18.4, 21.4, 24.4 and 27.8°C) conditions. Our results demonstrate that cell permeability and cytotoxicity are strongly correlated in unialgal cultures of H. akashiwo, which both increased as salinity decreased from 32 to 10. Furthermore, over a broad median range of salinities (10 and 20), neither temperature nor specific growth rate were correlated with cytotoxicity. However, in cultures grown at the salinity of 32, both temperature and specific growth rate were inversely proportional to toxicity; this relationship was likely due to the effect of contamination by an unidentifi...
Microalgal communities that colonize the hulls of at-risk vessels - those which have the highest ... more Microalgal communities that colonize the hulls of at-risk vessels - those which have the highest port residency times, lowest speeds, and most stationary time in water - are expected to change as a function of environmental factors during ocean voyages, but are rarely studied. The microalgal communities on the hull of an atypically operated ship, the T.S. Golden Bear, were quantified during the course of a voyage from San Francisco Bay to the South Pacific and back. Here we clearly demonstrate that microalgal communities can be highly resilient, and can survive physiologically strenuous journeys through extreme variation in salinity and temperature. A 42% reduction in microalgal biomass and a 62% reduction in algal cellular abundance indicated a community-wide negative reaction to an increase in both salinity and temperature after the ship left San Francisco Bay, CA and cruised southward to Long Beach, although in vivo cellular fluorescence capacity increased. Further reductions in ...
Many efforts to improve science teaching in higher education focus on a few faculty members at an... more Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty particip...
A laboratory study using the fish-killing raphidophyte Heterosigma akashiwo was conducted to exam... more A laboratory study using the fish-killing raphidophyte Heterosigma akashiwo was conducted to examine its capability to grow at salinities below oceanic, and to test the perceived relationship between reduced salinities and increased cytotoxicity. A non-axenic strain of H. akashiwo isolated from the U.S. Pacific Northwest was exposed to a combination of three salinity (32, 20 and 10) and five temperature (14.7, 18.4, 21.4, 24.4 and 27.8°C) conditions. Our results demonstrate that cell permeability and cytotoxicity are strongly correlated in unialgal cultures of H. akashiwo, which both increased as salinity decreased from 32 to 10. Furthermore, over a broad median range of salinities (10 and 20), neither temperature nor specific growth rate were correlated with cytotoxicity. However, in cultures grown at the salinity of 32, both temperature and specific growth rate were inversely proportional to toxicity; this relationship was likely due to the effect of contamination by an unidentifi...
Uploads
Papers by William P Cochlan