HslU-HslV peptidaza
Izgled
HslU-HslV peptidaza | |||||||||
---|---|---|---|---|---|---|---|---|---|
HslU-HslV peptidaza dodekamer, E.Coli | |||||||||
Identifikatori | |||||||||
EC broj | 3.4.25.2 | ||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB | RCSB PDB PDBe PDBj PDBsum | ||||||||
|
HslU-HslV peptidaza (EC 3.4.25.2, HslUV, HslV-HslU, HslV peptidaza, ATP-zavisna HslV-HslU proteinaza, kazeinolitička proteaza X, kazeinolitička proteinaza X, ClpXP ATP-zavisna proteaza, ClpXP proteaza, ClpXP serinska proteinaza, Escherichia coli ClpXP serinska proteinaza, HslUV proteaza, HslUV proteinaza, HslVU proteaza, HslVU proteinaza, proteaza HslVU, proteinaza HslUV) je enzim.[1][2][3][4][5][6][7] Ovaj enzim katalizuje sledeću hemijsku reakciju
- ATP-zavisno razlaganje peptidnih veza sa širokom specifičnošću
Ovaj enzim pripada peptidaznoj familiji T1.
- ↑ Wang, J., Rho, S.H., Park, H.H. and Eom, S.H. (2005). „Correction of X-ray intensities from an HslV-HslU co-crystal containing lattice-translocation defects”. Acta Crystallogr. D Biol. Crystallogr. 61: 932-941. PMID 15983416.
- ↑ Nishii, W. and Takahashi, K. (2003). „Determination of the cleavage sites in SulA, a cell division inhibitor, by the ATP-dependent HslVU protease from Escherichia coli”. FEBS Lett. 553: 351-354. PMID 14572649.
- ↑ Ramachandran, R., Hartmann, C., Song, H.K., Huber, R. and Bochtler, M. (2002). „Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY)”. Proc. Natl. Acad. Sci. USA 99: 7396-7401. PMID 12032294.
- ↑ Yoo, S.J., Seol, J.H., Shin, D.H., Rohrwild, M., Kang, M.S., Tanaka, K., Goldberg, A.L. and Chung, C.H. (1996). „Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli”. J. Biol. Chem. 271: 14035-14040. PMID 8662828.
- ↑ Yoo, S.J., Seol, J.H., Seong, I.S., Kang, M.S. and Chung, C.H. (1997). „ATP binding, but not its hydrolysis, is required for assembly and proteolytic activity of the HslVU protease in Escherichia coli”. Biochem. Biophys. Res. Commun. 238: 581-585. PMID 9299555.
- ↑ Kanemori, M., Nishihara, K., Yanagi, H. and Yura, T. (1997). „Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of σ32 and abnormal proteins in Escherichia coli”. J. Bacteriol. 179: 7219-7225. PMID 9393683.
- ↑ Burton, R.E., Baker, T.A. and Sauer, R.T. (2005). „Nucleotide-dependent substrate recognition by the AAA+ HslUV protease”. Nat. Struct. Mol. Biol. 12: 245-251. PMID 15696175.
- Nicholas C. Price, Lewis Stevens (1999). Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins (Third izd.). USA: Oxford University Press. ISBN 019850229X.
- Eric J. Toone (2006). Advances in Enzymology and Related Areas of Molecular Biology, Protein Evolution (Volume 75 izd.). Wiley-Interscience. ISBN 0471205036.
- Branden C, Tooze J.. Introduction to Protein Structure. New York, NY: Garland Publishing. ISBN: 0-8153-2305-0.
- Irwin H. Segel. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Book 44 izd.). Wiley Classics Library. ISBN 0471303097.
- Robert A. Copeland (2013). Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists (2nd izd.). Wiley-Interscience. ISBN 111848813X.
- Gerhard Michal, Dietmar Schomburg (2012). Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (2nd izd.). Wiley. ISBN 0470146842.