Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as ... more Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtain...
Despite the difficulties in obtaining the ultimate capacity of the large diameter bored piles (LD... more Despite the difficulties in obtaining the ultimate capacity of the large diameter bored piles (LDBP) using the in situ loading test, this method is the most recommended by several codes and design standards. However, several settlement-based approaches, alongside the conventional capacity-based design approach for LDBP, are proposed in the event of the impossibility of performing a pile-loading test during the design phase. With that in mind, natural clays usually involve some degree of over consolidation; there is considerable debate among the various approaches on how to represent the behavior of the overconsolidated (OC)stiff clay and its design parameters, whether drained or undrained, in the pile-load test problems. In this paper, field measurements of axial loaded to failure LDBP load test installed in OC stiff clay (Alzey Bridge Case Study, Germany) have been used to assess the quality of two numerical models established to simulate the pile behavior in both drained and undrained conditions. After calibration, the load transfer mechanism of the LDBP in both drained and undrained conditions has been explored. Results of the numerical analyses showed the main differences between the soil pile interaction in both drained and undrained conditions. Also, field measurements have been used to assess the ultimate pile capacity estimated using different methods.
A finite element model is established using MIDAS GTS NX 2018 software, in order to simulate the ... more A finite element model is established using MIDAS GTS NX 2018 software, in order to simulate the behavior of an instrumented large diameter bored pile, installed in multi layered soil and tested under three different loading and unloading cycles at Damietta Port Grain Silos project site. Modified Mohr-Coulomb constitutive model has been used to define the drained condition for sandy soil layers and undrained condition for clayey soil layers. Necessary soil parameters were determined from extensive laboratory and in-situ soil tests. Numerical results are compared with field loading test measurements and very good agreement is obtained. The effect of dilatancy angle on pile load transfer mechanism was investigated, and results of the study showed important effect for the dilatancy angle on the pile settlement values and the load distribution along the pile shaft. Results obtained also showed that the plastic zone below the base of the pile at failure extended laterally to about seven times the pile diameter and vertically to about 5 times the pile diameter. Keywords: Large diameter bored pile, full scale pile load test, settlement, pile load distribution, finite element, Modified Mohr-Coulomb constitutive model, load transfer mechanism, pile failure, dilatancy angle, end bearing influence zone.
Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as ... more Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtain...
Despite the difficulties in obtaining the ultimate capacity of the large diameter bored piles (LD... more Despite the difficulties in obtaining the ultimate capacity of the large diameter bored piles (LDBP) using the in situ loading test, this method is the most recommended by several codes and design standards. However, several settlement-based approaches, alongside the conventional capacity-based design approach for LDBP, are proposed in the event of the impossibility of performing a pile-loading test during the design phase. With that in mind, natural clays usually involve some degree of over consolidation; there is considerable debate among the various approaches on how to represent the behavior of the overconsolidated (OC)stiff clay and its design parameters, whether drained or undrained, in the pile-load test problems. In this paper, field measurements of axial loaded to failure LDBP load test installed in OC stiff clay (Alzey Bridge Case Study, Germany) have been used to assess the quality of two numerical models established to simulate the pile behavior in both drained and undrained conditions. After calibration, the load transfer mechanism of the LDBP in both drained and undrained conditions has been explored. Results of the numerical analyses showed the main differences between the soil pile interaction in both drained and undrained conditions. Also, field measurements have been used to assess the ultimate pile capacity estimated using different methods.
A finite element model is established using MIDAS GTS NX 2018 software, in order to simulate the ... more A finite element model is established using MIDAS GTS NX 2018 software, in order to simulate the behavior of an instrumented large diameter bored pile, installed in multi layered soil and tested under three different loading and unloading cycles at Damietta Port Grain Silos project site. Modified Mohr-Coulomb constitutive model has been used to define the drained condition for sandy soil layers and undrained condition for clayey soil layers. Necessary soil parameters were determined from extensive laboratory and in-situ soil tests. Numerical results are compared with field loading test measurements and very good agreement is obtained. The effect of dilatancy angle on pile load transfer mechanism was investigated, and results of the study showed important effect for the dilatancy angle on the pile settlement values and the load distribution along the pile shaft. Results obtained also showed that the plastic zone below the base of the pile at failure extended laterally to about seven times the pile diameter and vertically to about 5 times the pile diameter. Keywords: Large diameter bored pile, full scale pile load test, settlement, pile load distribution, finite element, Modified Mohr-Coulomb constitutive model, load transfer mechanism, pile failure, dilatancy angle, end bearing influence zone.
Uploads
Papers by Tamer Sorour