Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Pojdi na vsebino

Metoda Monte Carlo

Iz Wikipedije, proste enciklopedije
Uporaba metode Monte Carlo pri določanju približne vrednosti števila π. Po postavitvi 30.000 naključnih točk je ocena za π v okviru 0,07 % napake od resnične vrednosti. To se zgodi z verjetnostjo, ki znaša približno 20 %.

Metode Monte Carlo so stohastične (deterministične) simulacijske metode ali algoritmi, ki s pomočjo naključnih ali kvazinaključnih števil in velikega števila izračunov in ponavljanja omogočajo predvidevanje obnašanja zapletenih matematičnih sistemov.

Zgodovina

[uredi | uredi kodo]

Prvotno so bile iznajdene v državnem laboratoriju v mestu Los Alamos v ZDA nedolgo po koncu 2. svetovne vojne. Takrat je bilo v ZDA ravno končan prvi elektronski računski stroj in znanstveniki v Los Alamosu so razmišljali o tem, kako bi se ga dalo najbolje izkoristiti za razvoj jedrskega orožja (vodikove bombe). Leta 1946 je Ulam predlagal uporabo naključnega vzorčenja za simulacijo potovanja nevtronov in von Neumann je predlog leta 1947 realiziral. S tem so bile omogočene simulacije preprostih razmer, ki pa so bile vseeno pomembne za uspešno izvedbo projekta. Ulam in Metropolis sta leta 1949 objavila članek, v katerem sta opisala svoje ideje, čemur je sledilo mnogo raziskav tekom 1950-ih let. Metode so dobile ime po glavnem mestu države Monako, ki je znano po svojih igralnicah in igrah na srečo (ime je predlagal Metropolis, eden od pionirjev te metode).

Uporaba

[uredi | uredi kodo]

V ekonomiji se uporabljajo za računanje poslovnega tveganja, spremembo vrednosti investicij, pri strateškem planiranju ipd.

V medicinski fiziki in radioterapiji se uporablja za načrtovanje doze za obsevanje tumorjev.

  • Anderson, Herbert L. (1986). »Metropolis, Monte Carlo and the MANIAC« (PDF). Los Alamos Science. 14: 96–108.
  • Baeurle, Stephan A. (2009). »Multiscale modeling of polymer materials using field-theoretic methodologies: A survey about recent developments«. Journal of Mathematical Chemistry. 46 (2): 363–426. doi:10.1007/s10910-008-9467-3.
  • Berg, Bernd A. (2004). Markov Chain Monte Carlo Simulations and Their Statistical Analysis (With Web-Based Fortran Code). Hackensack, NJ: World Scientific. ISBN 981-238-935-0.
  • Binder, Kurt (1995). The Monte Carlo Method in Condensed Matter Physics. New York: Springer. ISBN 0-387-54369-4.
  • Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods. Acta Numerica. Zv. 7. Cambridge University Press. str. 1–49.
  • Davenport, J. H. »Primality testing revisited«. Proceeding ISSAC '92 Papers from the international symposium on Symbolic and algebraic computation: 123 129. doi:10.1145/143242.143290. ISBN 0-89791-489-9.
  • Doucet, Arnaud (2001). Sequential Monte Carlo methods in practice. New York: Springer. ISBN 0-387-95146-6.
  • Eckhardt, Roger (1987). »Stan Ulam, John von Neumann, and the Monte Carlo method« (PDF). Los Alamos Science, Special Issue (15): 131–137.
  • Fishman, G. S. (1995). Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer. ISBN 0-387-94527-X.
  • Forastero, C.; Zamora, L.; Guirado, D.; Lallena, A. (2010). »A Monte Carlo tool to simulate breast cancer screening programmes«. Phys. In Med. And Biol. 55 (17): 5213–5229. Bibcode:2010PMB....55.5213F. doi:10.1088/0031-9155/55/17/021.
  • Golden, Leslie M. (1979). »The Effect of Surface Roughness on the Transmission of Microwave Radiation Through a Planetary Surface«. Icarus. 38 (3): 451–455. Bibcode:1979Icar...38..451G. doi:10.1016/0019-1035(79)90199-4.
  • Gould, Harvey (1988). An Introduction to Computer Simulation Methods, Part 2, Applications to Physical Systems. Reading: Addison-Wesley. ISBN 0-201-16504-X.
  • Grinstead, Charles; Snell, J. Laurie (1997). Introduction to Probability. American Mathematical Society. str. 10–11.
  • Hammersley, J. M. (1975). Monte Carlo Methods. London: Methuen. ISBN 0-416-52340-4.
  • Hartmann, A.K. (2009). Practical Guide to Computer Simulations. World Scientific. ISBN 978-981-283-415-7.
  • Hubbard, Douglas (2007). How to Measure Anything: Finding the Value of Intangibles in Business. John Wiley & Sons. str. 46.
  • Hubbard, Douglas (2009). The Failure of Risk Management: Why It's Broken and How to Fix It. John Wiley & Sons.
  • Kahneman, D. (1982). Judgement under Uncertainty: Heuristics and Biases. Cambridge University Press.
  • Kalos, Malvin H.; Whitlock, Paula A. (2008). Monte Carlo Methods. Wiley-VCH. ISBN 978-3-527-40760-6.
  • Kroese, D. P. (2011). Handbook of Monte Carlo Methods. New York: John Wiley & Sons. str. 772. ISBN 0-470-17793-4.
  • MacGillivray, H. T.; Dodd, R. J. (1982). »Monte-Carlo simulations of galaxy systems« (PDF). Astrophysics and Space Science. Springer Netherlands. 86 (2).[mrtva povezava]
  • MacKeown, P. Kevin (1997). Stochastic Simulation in Physics. New York: Springer. ISBN 981-3083-26-3.
  • Metropolis, N. (1987). »The beginning of the Monte Carlo method« (PDF). Los Alamos Science (1987 Special Issue dedicated to Stanislaw Ulam): 125–130.
  • Metropolis, Nicholas (1953). »Equation of State Calculations by Fast Computing Machines«. Journal of Chemical Physics. 21 (6): 1087. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114.
  • Metropolis, N.; Ulam, S. (1949). »The Monte Carlo Method«. Journal of the American Statistical Association. American Statistical Association. 44 (247): 335–341. doi:10.2307/2280232. JSTOR 2280232. PMID 18139350.
  • Milik, M.; Skolnick, J. (Januar 1993). »Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model«. Proteins. 15 (1): 10–25. doi:10.1002/prot.340150104. PMID 8451235.
  • Mosegaard, Klaus (1995). »Monte Carlo sampling of solutions to inverse problems«. J. Geophys. Res. 100 (B7): 12431–12447. Bibcode:1995JGR...10012431M. doi:10.1029/94JB03097.
  • Ojeda, P.; Garcia, M.; Londono, A.; Chen, N.Y. (Februar 2009). »Monte Carlo Simulations of Proteins in Cages: Influence of Confinement on the Stability of Intermediate States«. Biophys. Jour. Biophysical Society. 96 (3): 1076–1082. Bibcode:2009BpJ....96.1076O. doi:10.1529/biophysj.107.125369.
  • Int Panis, Luc; De Nocker, Leo; De Vlieger, Ina; Torfs, Rudi (2001). »Trends and uncertainty in air pollution impacts and external costs of Belgian passenger car traffic International«. Journal of Vehicle Design. 27 (1–4): 183–194. doi:10.1504/IJVD.2001.001963.
  • Int Panis L; Rabl A; De Nocker L; Torfs R (2002). P. Sturm (ur.). »Diesel or Petrol ? An environmental comparison hampered by uncertainty«. Mitteilungen Institut für Verbrennungskraftmaschinen und Thermodynamik. Technische Universität Graz Austria. Heft 81 Vol 1: 48–54.
  • Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (1996) [1986]. Numerical Recipes in Fortran 77: The Art of Scientific Computing. Fortran Numerical Recipes. Zv. 1 (Second izd.). Cambridge University Press. ISBN 0-521-43064-X.
  • Ripley, B. D. (1987). Stochastic Simulation. Wiley & Sons.
  • Robert, C. P. (2004). Monte Carlo Statistical Methods (2. izd.). New York: Springer. ISBN 0-387-21239-6.
  • Rubinstein, R.Y. (2007). Simulation and the Monte Carlo Method (2. izd.). New York: John Wiley & Sons. ISBN 978-0-470-17793-8.
  • Savvides, Savvakis C. (1994). »Risk Analysis in Investment Appraisal«. Project Appraisal Journal. 9 (1). doi:10.2139/ssrn.265905.
  • Sawilowsky, Shlomo S.; Fahoome, Gail C. (2003). Statistics via Monte Carlo Simulation with Fortran. Rochester Hills, MI: JMASM. ISBN 0-9740236-0-4.
  • Sawilowsky, Shlomo S. (2003). »You think you've got trivials?« (PDF). Journal of Modern Applied Statistical Methods. 2 (1): 218–225.[mrtva povezava]
  • Silver, David; Veness, Joel (2010). »Monte-Carlo Planning in Large POMDPs« (PDF). V Lafferty, J.; Williams, C. K. I.; Shawe-Taylor, J.; Zemel, R. S.; Culotta, A. (ur.). Advances in Neural Information Processing Systems 23. Neural Information Processing Systems Foundation. Arhivirano iz prvotnega spletišča (PDF) dne 25. maja 2012. Pridobljeno 3. julija 2017.
  • Szirmay-Kalos, László (2008). Monte Carlo Methods in Global Illumination - Photo-realistic Rendering with Randomization. VDM Verlag Dr. Mueller e.K. ISBN 978-3-8364-7919-6.
  • Širca, Simon; Horvat, Martin (2010), Računske metode za fizike, Matematika – Fizika: zbirka univerzitetnih učbenikov in monografij, zv. 46 (1. izd.), DMFA – založništvo, COBISS 253114368, ISBN 978-961-212-227-0, ISSN 1408-1571
  • Tarantola, Albert (2005). Inverse Problem Theory. Philadelphia: Society for Industrial and Applied Mathematics. ISBN 0-89871-572-5.
  • Vose, David (2008). Risk Analysis, A Quantitative Guide (Third izd.). John Wiley & Sons.

Zunanje povezave

[uredi | uredi kodo]