Situational awareness and learning are necessary to identify and select the optimal set of mutual... more Situational awareness and learning are necessary to identify and select the optimal set of mutually non-exclusive hypothesis in order to maximize mission performance and adapt system behavior accordingly. This paper presents a hierarchical and decentralized approach for integrated damage assessment and trajectory planning in aircraft with uncertain navigational decision-making. Aircraft navigation can be safely accomplished by properly addressing the following: decision-making, obstacle perception, aircraft state estimation, and aircraft control. When in-flight failures or damage occur, rapid and precise decision-making under imprecise information is required in order to regain and maintain control of the aircraft. To achieve planned aircraft trajectory and complete safe landing, the uncertainties in system dynamics of the damaged aircraft need to be learned and incorporated at the level of motion planning. The damaged aircraft is simulated via a simplified kinematic model. The different sources and perspectives of uncertainties in the damage assessment process and post-failure trajectory planning are presented and classified. The decision-making process for an emergency motion planning and landing is developed via the Dempster-Shafer evidence theory. The objective of the trajectory planning is to arrive at a target position while maximizing the safety of the aircraft given uncertain conditions. Simulations are presented for an emergency motion planning and landing that takes into account aircraft dynamics, path complexity, distance to landing site, runway characteristics, and subjective human decision.
... Vibration and aerocoustic case studies. Israel Lopez Corresponding Author Contact Information... more ... Vibration and aerocoustic case studies. Israel Lopez Corresponding Author Contact Information , a , E-mail The Corresponding Author and Nesrin Sarigul-Klijn 1 , a , E-mail The Corresponding Author. a Department of Mechanical ...
ABSTRACT A flight trajectory generation method called the distressed-aircraft-recovery technique ... more ABSTRACT A flight trajectory generation method called the distressed-aircraft-recovery technique for maximum safe-outcome probability (DART_MSOP), based oil integration of three new algorithms, is developed that maximizes safe-outcome probability after a distress event by incorporating all abort airport together with a model of current aircraft dynamics. Several abort-probability models are studied under various constraints. The first new algorithm, a statistical-based initial-turn-determination algorithm, is developed to advise pilots to a reachable best landing site immediately after the distress event and before using the second new algorithm, a high-fidelity flight trajectory generation algorithm. A third new algorithm determines the flight maneuver for guidance of a perpetual-turning-attitude aircraft to fly the trajectory generated by the second algorithm. The third algorithm is only used if the aircraft has stuck controls or a similar malfunction that generates a nonzero amount of bank angle and causes the aircraft to turn only in one direction. As a three-dimensional high-fidelity algorithm, the second algorithm considers the probability of an abort to increase overall survivability by minimizing expected flight-path length as it shapes the trajectory. The performance of this new intelligent flight trajectory determination method DART_MSOP is evaluated using a case study based on a hypothetical in-flight distressed transport aircraft in northern California. Numerical simulations include variable failure rates to simulate different in-flight distress conditions, and multiple fixes along the path to accommodate realistic trajectories. DART-MSOP intelligent flight trajectory determination method should increase aviation safety if these algorithms are implemented in aircraft avionics systems.
Situational awareness and learning are necessary to identify and select the optimal set of mutual... more Situational awareness and learning are necessary to identify and select the optimal set of mutually non-exclusive hypothesis in order to maximize mission performance and adapt system behavior accordingly. This paper presents a hierarchical and decentralized approach for integrated damage assessment and trajectory planning in aircraft with uncertain navigational decision-making. Aircraft navigation can be safely accomplished by properly addressing the following: decision-making, obstacle perception, aircraft state estimation, and aircraft control. When in-flight failures or damage occur, rapid and precise decision-making under imprecise information is required in order to regain and maintain control of the aircraft. To achieve planned aircraft trajectory and complete safe landing, the uncertainties in system dynamics of the damaged aircraft need to be learned and incorporated at the level of motion planning. The damaged aircraft is simulated via a simplified kinematic model. The different sources and perspectives of uncertainties in the damage assessment process and post-failure trajectory planning are presented and classified. The decision-making process for an emergency motion planning and landing is developed via the Dempster-Shafer evidence theory. The objective of the trajectory planning is to arrive at a target position while maximizing the safety of the aircraft given uncertain conditions. Simulations are presented for an emergency motion planning and landing that takes into account aircraft dynamics, path complexity, distance to landing site, runway characteristics, and subjective human decision.
... Vibration and aerocoustic case studies. Israel Lopez Corresponding Author Contact Information... more ... Vibration and aerocoustic case studies. Israel Lopez Corresponding Author Contact Information , a , E-mail The Corresponding Author and Nesrin Sarigul-Klijn 1 , a , E-mail The Corresponding Author. a Department of Mechanical ...
ABSTRACT A flight trajectory generation method called the distressed-aircraft-recovery technique ... more ABSTRACT A flight trajectory generation method called the distressed-aircraft-recovery technique for maximum safe-outcome probability (DART_MSOP), based oil integration of three new algorithms, is developed that maximizes safe-outcome probability after a distress event by incorporating all abort airport together with a model of current aircraft dynamics. Several abort-probability models are studied under various constraints. The first new algorithm, a statistical-based initial-turn-determination algorithm, is developed to advise pilots to a reachable best landing site immediately after the distress event and before using the second new algorithm, a high-fidelity flight trajectory generation algorithm. A third new algorithm determines the flight maneuver for guidance of a perpetual-turning-attitude aircraft to fly the trajectory generated by the second algorithm. The third algorithm is only used if the aircraft has stuck controls or a similar malfunction that generates a nonzero amount of bank angle and causes the aircraft to turn only in one direction. As a three-dimensional high-fidelity algorithm, the second algorithm considers the probability of an abort to increase overall survivability by minimizing expected flight-path length as it shapes the trajectory. The performance of this new intelligent flight trajectory determination method DART_MSOP is evaluated using a case study based on a hypothetical in-flight distressed transport aircraft in northern California. Numerical simulations include variable failure rates to simulate different in-flight distress conditions, and multiple fixes along the path to accommodate realistic trajectories. DART-MSOP intelligent flight trajectory determination method should increase aviation safety if these algorithms are implemented in aircraft avionics systems.
Uploads
Papers by Israel Lopez