Plasmonics provides a route to develop ultracompact optical devices on a chip by using extreme li... more Plasmonics provides a route to develop ultracompact optical devices on a chip by using extreme light concentration and the ability to perform simultaneous electrical and optical functions. These properties also make plasmonics an ideal candidate for dynamically controlling nonlinear optical interactions at the nanoscale. We demonstrate electrically tunable harmonic generation of light from a plasmonic nanocavity filled with a nonlinear medium. The metals that define the cavity also serve as electrodes that can generate high direct current electric fields across the nonlinear material. A fundamental wave at 1.56 micrometers was frequency doubled and modulated in intensity by applying a moderate external voltage to the electrodes, yielding a voltage-dependent nonlinear generation with a normalized magnitude of ~7% per volt.
We present an experimental demonstration of nanoscale gap plasmon resonators that consist of an i... more We present an experimental demonstration of nanoscale gap plasmon resonators that consist of an individual suspended plasmonic nanowire (NW) over a metallic substrate. Our study demonstrates that the NW supports strong gap plasmon resonances of various gap sizes including single-nanometer-scale gaps. The obtained resonance features agree well with intuitive resonance models for near- and far-field regimes. We also illustrate that our suspended NW geometry is capable of constructing plasmonic coupled systems dominated by quasi-electrostatics.
A method is shown for the extension in higher spatial dimensions of deterministic, aperiodic stru... more A method is shown for the extension in higher spatial dimensions of deterministic, aperiodic structures which exhibit strong aperiodic effects and have overall compatibility with the planar technology of integrated optical circuits. Disclosed devices are operative in response to incident electromagnetic energy to create a distribution of electromagnetic energy having localized electromagnetic field enhancement, wherein the device includes a dielectric or plasmonic material having a region of interaction with the incident electromagnetic energy ...
Integrated Photonics Research and Applications/Nanophotonics, 2006
ABSTRACT Metallic nanostructures have received considerable attention for their ability to manipu... more ABSTRACT Metallic nanostructures have received considerable attention for their ability to manipulate light at the nanoscale. Near-field optical measurements and electromagnetic simulations are presented that highlight the limitations and capabilities of such structures.
The resonant properties of a plasmonic cavity are determined by the size of the cavity, the surfa... more The resonant properties of a plasmonic cavity are determined by the size of the cavity, the surface plasmon polariton (SPP) dispersion relationship, and the complex reflection coefficients of the cavity boundaries. In small wavelength-scale cavities, the phase propagation due to reflections from the cavity walls is of a similar magnitude to propagation due to traversing the cavity. Until now, this reflection phase has been inferred from measurements of the resonant frequencies of a cavity of known dispersion and length. In this work, we present a method for measuring the complex reflection coefficients of a truncation in a 1D surface plasmon waveguide using electron energy loss spectroscopy in the scanning transmission electron microscope (STEM EELS) and show that this insight can be used to engineer custom cavities with engineered reflecting boundaries, whose resonant wavelengths and internal mode density profiles can be analytically predicted given knowledge of the cavity dimensio...
10th International Conference on Group IV Photonics, 2013
ABSTRACT We report uniaxial tensile strains up to 5.0% in lithographically patterned germanium na... more ABSTRACT We report uniaxial tensile strains up to 5.0% in lithographically patterned germanium nanowires, which is enough strain to make germanium a direct bandgap semiconductor. Theoretically, this strain can reduce a germanium laser's threshold by >16,000x.
Plasmonics provides a route to develop ultracompact optical devices on a chip by using extreme li... more Plasmonics provides a route to develop ultracompact optical devices on a chip by using extreme light concentration and the ability to perform simultaneous electrical and optical functions. These properties also make plasmonics an ideal candidate for dynamically controlling nonlinear optical interactions at the nanoscale. We demonstrate electrically tunable harmonic generation of light from a plasmonic nanocavity filled with a nonlinear medium. The metals that define the cavity also serve as electrodes that can generate high direct current electric fields across the nonlinear material. A fundamental wave at 1.56 micrometers was frequency doubled and modulated in intensity by applying a moderate external voltage to the electrodes, yielding a voltage-dependent nonlinear generation with a normalized magnitude of ~7% per volt.
We present an experimental demonstration of nanoscale gap plasmon resonators that consist of an i... more We present an experimental demonstration of nanoscale gap plasmon resonators that consist of an individual suspended plasmonic nanowire (NW) over a metallic substrate. Our study demonstrates that the NW supports strong gap plasmon resonances of various gap sizes including single-nanometer-scale gaps. The obtained resonance features agree well with intuitive resonance models for near- and far-field regimes. We also illustrate that our suspended NW geometry is capable of constructing plasmonic coupled systems dominated by quasi-electrostatics.
A method is shown for the extension in higher spatial dimensions of deterministic, aperiodic stru... more A method is shown for the extension in higher spatial dimensions of deterministic, aperiodic structures which exhibit strong aperiodic effects and have overall compatibility with the planar technology of integrated optical circuits. Disclosed devices are operative in response to incident electromagnetic energy to create a distribution of electromagnetic energy having localized electromagnetic field enhancement, wherein the device includes a dielectric or plasmonic material having a region of interaction with the incident electromagnetic energy ...
Integrated Photonics Research and Applications/Nanophotonics, 2006
ABSTRACT Metallic nanostructures have received considerable attention for their ability to manipu... more ABSTRACT Metallic nanostructures have received considerable attention for their ability to manipulate light at the nanoscale. Near-field optical measurements and electromagnetic simulations are presented that highlight the limitations and capabilities of such structures.
The resonant properties of a plasmonic cavity are determined by the size of the cavity, the surfa... more The resonant properties of a plasmonic cavity are determined by the size of the cavity, the surface plasmon polariton (SPP) dispersion relationship, and the complex reflection coefficients of the cavity boundaries. In small wavelength-scale cavities, the phase propagation due to reflections from the cavity walls is of a similar magnitude to propagation due to traversing the cavity. Until now, this reflection phase has been inferred from measurements of the resonant frequencies of a cavity of known dispersion and length. In this work, we present a method for measuring the complex reflection coefficients of a truncation in a 1D surface plasmon waveguide using electron energy loss spectroscopy in the scanning transmission electron microscope (STEM EELS) and show that this insight can be used to engineer custom cavities with engineered reflecting boundaries, whose resonant wavelengths and internal mode density profiles can be analytically predicted given knowledge of the cavity dimensio...
10th International Conference on Group IV Photonics, 2013
ABSTRACT We report uniaxial tensile strains up to 5.0% in lithographically patterned germanium na... more ABSTRACT We report uniaxial tensile strains up to 5.0% in lithographically patterned germanium nanowires, which is enough strain to make germanium a direct bandgap semiconductor. Theoretically, this strain can reduce a germanium laser's threshold by >16,000x.
Uploads
Papers by Mark Brongersma