Lexikografisk ordning
Lexikografisk ordningsföljd är ett sätt att ordna mängder inom matematiken. Ett exempel på en lexikografiskt ordnad mängd är alfabetiskt ordnade uppslagsord i ett uppslagsverk. [1] Metoden att ordna mängder i lexikografisk ordning beskrevs matematiskt av Julius König och Richard Jules år 1905 [2] oberoende av varandra [3]. Den lexikografiskt ordnade mängden tas fram genom att definiera en relation på produktmängden av två partiellt ordnade mängder. Observera att konstruktionen nedan definierar en total ordning i de fall och både är totala ordningar.
Definition
[redigera | redigera wikitext]- Antag att respektive är partiella ordningar på respektive . Relationen på produktmängden × definieras genom att låta om och endast om
Relationen är den lexikografiska ordningen på produktmängden × . [1]
- Den lexikografiska ordningen kan också uttryckas som en naturlig ordning av Cartesiska produkten av ett antal ordnade mängder, definierad genom att jämföra termerna i ordning, dvs:
Sats
[redigera | redigera wikitext]Om respektive är partiella ordningar på respektive så är den lexikografiska ordningen en partiell ordning på produktmängden × .
Bevisgång
[redigera | redigera wikitext]Att den lexikografiska ordningen är partiellt ordnad visas genom att de tre kriterierna för partiellt ordnade mängder (reflexivitet, antisymmetri och transitivitet) uppfylls både för antagandet och för antagandet .[1]
Exempel och tillämpningar
[redigera | redigera wikitext]- Om mängderna och båda har relationen ges den lexikografiska ordningen på produktmängden enligt (1,1), (1,2), (1,3), (2,1), (2,2), (2,3).[4]
- I ett uppslagsverk används bokstävernas ordning i alfabetet för att bestämma ordningen mellan uppslagsorden, t.ex. kommer ab före ac, vilket är en lexikografisk ordning.[1]
Källor
[redigera | redigera wikitext]- ^ [a b c d] Ekenberg, L: "Logikens grunder", sidor 150-151. Natur och Kultur, 2001
- ^ Quine, W.: "Set theory and it's logic", sidor 208-211. Belknap press, 1963
- ^ van Heijenoort, J.: "From Frege to Gödel", sidor 142-149. Harvard University Press, 1967
- ^ Ekenberg, L: "Logikens grunder", sidor 152 och 264. Natur och Kultur, 2001