Poly(ε-caprolactone)/chitosan (PCL/chitosan) blend nanofibers with different ratios of chitosan w... more Poly(ε-caprolactone)/chitosan (PCL/chitosan) blend nanofibers with different ratios of chitosan were electrospun from a formic acid/acetic acid (FA/AA) solvent system. Bovine serum albumin (BSA) was used as a model protein to incorporate biochemical cues into the nanofibrous scaffolds. The morphological characteristics of PCL/chitosan and PCL/chitosan/BSA Nanofibers were investigated by scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) was used to detect the presence of polymeric ingredients and BSA in the Nanofibers. The effects of the polymer blend ratio and BSA concentration on the morphological characteristics and consequently on the BSA release pattern were evaluated. The average fiber diameter and pore size were greater in Nanofibers containing BSA. The chitosan ratio played a significant role in the BSA release profile from the PCL/chitosan/BSA blend. Nanofibrous scaffolds with higher chitosan ratios exhibited less intense bursts in the BSA re...
The scaffold material and architecture of the scaffold can affect cell seeding and tissue growth ... more The scaffold material and architecture of the scaffold can affect cell seeding and tissue growth both in vitro and in vivo in the engineering of various tissues. Biocompatible and biodegradable polymers can be used to produce scaffolds in tissue engineering. Poly(caprolactone) PCL and Chitosan are promising biodegradable polymers to fabricate tissue engineering scaffolds. Hydroxyapatite (HA) is osetoconductive and is being used for bone replacement. The composite scaffolds made of these two materials have great potential for bone tissue engineering. This paper reports the fabrication and characterization of three-dimensional, highly porous composite scaffolds produced from HA/PCL and HA/Chitosan. The scaffolds were produced using thermally induced phase separation (TIPS) technique. The structure and properties of composite scaffolds were investigated using various techniques.
Fluoridated hydroxyapatite (FHA) in nanorod morphology and hexagonal cross section were synthesis... more Fluoridated hydroxyapatite (FHA) in nanorod morphology and hexagonal cross section were synthesised via hydrothermal process using Apricot Tree Gum (ATG) as a surfactant. The synthesised FHA nanorods were then used as reinforcement in bisphenol A-glycol dimethacrylate (Bis-GMA) as base monomer of composite matrix. The FHA nanorods with different ratios were incorporated in the matrix to examine fluoride ion release and pH changes in the Simulated Body Fluid (SBF) and their mechanical properties. The resin without FHA reinforcement was used as the control sample. The Diametral Tensile Strength (DTS), Flexural Strength (FS), and Flexural Modulus (FM) of the reinforced composite were found to be higher compared to the control sample; the values increased from 34.8 to 45.4 MPa, 76.5 to 99.4 MPa, and 1.7 to 2.5 GPa, respectively. Moreover, findings revealed that the pH is reduced by releasing the fluoride ions into the SBF which can be effective for preventing secondary caries. The most ...
ABSTRACT Bioactive glasses represent a class of attractive materials in bone reconstruction. This... more ABSTRACT Bioactive glasses represent a class of attractive materials in bone reconstruction. This study describes the detailed preparation and characterization of a silicate-based bioactive glass-ceramic (R-SBgC). Synthesis of bioactive glasses using the sol–gel method has advantages compared to the melting method. However, expensive raw materials are required and pose a major issue. To overcome this, R-SBgC was synthesized via the sol–gel method using Rice Husk (RH) as a natural silica precursor. The RH was heat treated and used as an alternative to tetraethyl orthosilicate (TEOS), which is a common synthetic silica precursor. X-ray diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM) were used to characterize the rice husk ash (RHA). The findings reveal that the extracted silica has a high purity (~ 99%). The synthesized R-SBgC powder was characterized using SEM, Energy Dispersive X-ray Analysis (EDX), XRD, XRF and Fourier-Transform Infrared Spectroscopy (FTIR) to complete the morphological and elemental analysis. Moreover, in vitro bioactivity via an immersion assessment was conducted for up to 14 days. The HA layer formation, which is an indicator of the bioactivity on the surface of the R-SBgC, was confirmed using SEM, EDX and further by FTIR. Biocompatibility of the R-SBgC was evaluated in vitro. After 3 days of human bone marrow stromal cell (hBMSC) seeding, SEM analysis revealed cell attachment on the surface of the R-SBgC. Alamar blue and XTT cytotoxic assays demonstrated cell proliferation abilities and the non-cytotoxic effect of the R-SBgC. Altogether, the results demonstrate that prepared rice husk-derived bioactive glass ceramic may be a promising carrier for tissue engineering applications.
Bioactive glasses represent a class of attractive materials in bone reconstruction. This study de... more Bioactive glasses represent a class of attractive materials in bone reconstruction. This study describes the detailed preparation and characterization of a silicate-based bioactive glass-ceramic (R-SBgC). Synthesis of bioactive glasses using the sol–gel method has advantages compared to the melting method. However, expensive raw materials are required and pose a major issue. To overcome this, R-SBgC was synthesized via the sol–gel method using Rice Husk (RH) as a natural silica precursor. The RH was heat treated and used as an alternative to tetraethyl orthosilicate (TEOS), which is a common synthetic silica precursor. X-ray diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM) were used to characterize the rice husk ash (RHA). The findings reveal that the extracted silica has a high purity (~ 99%). The synthesized R-SBgC powder was characterized using SEM, Energy Dispersive X-ray Analysis (EDX), XRD, XRF and Fourier-Transform Infrared Spectroscopy (FTIR) to complete the morphological and elemental analysis. Moreover, in vitro bioactivity via an immersion assessment was conducted for up to 14 days. The HA layer formation, which is an indicator of the bioactivity on the surface of the R-SBgC, was confirmed using SEM, EDX and further by FTIR. Biocompatibility of the R-SBgC was evaluated in vitro. After 3 days of human bone marrow stromal cell (hBMSC) seeding, SEM analysis revealed cell attachment on the surface of the R-SBgC. Alamar blue and XTT cytotoxic assays demonstrated cell proliferation abilities and the non-cytotoxic effect of the R-SBgC. Altogether, the results demonstrate that prepared rice husk-derived bioactive glass ceramic may be a promising carrier for tissue engineering applications.
Fluoridated hydroxyapatite (FHA) in nanorod morphology and hexagonal cross section were synthesis... more Fluoridated hydroxyapatite (FHA) in nanorod morphology and hexagonal cross section were synthesised via hydrothermal process using Apricot Tree Gum (ATG) as a surfactant. The synthesised FHA nanorods were then used as reinforcement in bisphenol A-glycol dimethacrylate (Bis-GMA) as base monomer of composite matrix. The FHA nanorods with different ratios were incorporated in the matrix to examine fluoride ion release and pH changes in the Simulated Body Fluid (SBF) and their mechanical properties. The resin without FHA reinforcement was used as the control sample. The Diametral Tensile Strength (DTS), Flexural Strength (FS), and Flexural Modulus (FM) of the reinforced composite were found to be higher compared to the control sample; the values increased from 34.8 to 45.4 MPa, 76.5 to 99.4 MPa, and 1.7 to 2.5 GPa, respectively. Moreover, findings revealed that the pH is reduced by releasing the fluoride ions into the SBF which can be effective for preventing secondary caries. The most optimum mechanical properties were achieved with 0.2 wt% of FHA reinforcement. The FHA nanocomposite meets the minimum standard requirements for dental applications and compared to other dental composites has advantage of preventing formation of secondary caries due to release of fluoride.
Nanosized hydroxyapatite is a material that is commonly used as a matrix for bone tissue engineer... more Nanosized hydroxyapatite is a material that is commonly used as a matrix for bone tissue engineering. Although its chemical property is similar to that of natural bone, its limited antibacterial property has made it less desirable for use in present-day clinical applications. In the present study, we have investigated the possibility of improving the antibacterial and bioactivity of hydroxyapatite, by producing nanosized silver-containing fluorapatite, using the microwave technique.
Nanosized silver–fluorapatite particles were synthesized using 0.5 and 1=x fluoride through co-precipitation and the microwave refluxing treatment at 800 W, for 8 min. The crystalline phase, chemical composition, and morphology of the prepared samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM). The chemical analysis indicated the presence of a nanosized silver-fluorapatite phase. Transmission electron microscopy analysis showed a spheroid-like morphology, with an approximate diameter of ±76–92 nm. The bioactivity of the prepared samples, which was evaluated using simulated body fluid (SBF) immersion for 28 days, demonstrated good apatite layer formation. The antibacterial activity was evaluated using the disk diffusion method and showed good growth inhibition, while the osteoblast culture studies indicated that the presence of silver and fluoride provided superior cell attachment and growth. The antibacterial and cell culture results indicated that this new nanosized silver–fluorapatite bioceramic material had good antibacterial qualities, but remained biocompatible with osteoblasts. These findings suggested that nanosized silver–fluorapatite could potentially be used for bone regeneration applications.
Poly(ε-caprolactone)/chitosan (PCL/chitosan) blend nanofibers with different ratios of chitosan w... more Poly(ε-caprolactone)/chitosan (PCL/chitosan) blend nanofibers with different ratios of chitosan were electrospun from a formic acid/acetic acid (FA/AA) solvent system. Bovine serum albumin (BSA) was used as a model protein to incorporate biochemical cues into the nanofibrous scaffolds. The morphological characteristics of PCL/chitosan and PCL/chitosan/BSA Nanofibers were investigated by scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) was used to detect the presence of polymeric ingredients and BSA in the Nanofibers. The effects of the polymer blend ratio and BSA concentration on the morphological characteristics and consequently on the BSA release pattern were evaluated. The average fiber diameter and pore size were greater in Nanofibers containing BSA. The chitosan ratio played a significant role in the BSA release profile from the PCL/chitosan/BSA blend. Nanofibrous scaffolds with higher chitosan ratios exhibited less intense bursts in the BSA re...
The scaffold material and architecture of the scaffold can affect cell seeding and tissue growth ... more The scaffold material and architecture of the scaffold can affect cell seeding and tissue growth both in vitro and in vivo in the engineering of various tissues. Biocompatible and biodegradable polymers can be used to produce scaffolds in tissue engineering. Poly(caprolactone) PCL and Chitosan are promising biodegradable polymers to fabricate tissue engineering scaffolds. Hydroxyapatite (HA) is osetoconductive and is being used for bone replacement. The composite scaffolds made of these two materials have great potential for bone tissue engineering. This paper reports the fabrication and characterization of three-dimensional, highly porous composite scaffolds produced from HA/PCL and HA/Chitosan. The scaffolds were produced using thermally induced phase separation (TIPS) technique. The structure and properties of composite scaffolds were investigated using various techniques.
Fluoridated hydroxyapatite (FHA) in nanorod morphology and hexagonal cross section were synthesis... more Fluoridated hydroxyapatite (FHA) in nanorod morphology and hexagonal cross section were synthesised via hydrothermal process using Apricot Tree Gum (ATG) as a surfactant. The synthesised FHA nanorods were then used as reinforcement in bisphenol A-glycol dimethacrylate (Bis-GMA) as base monomer of composite matrix. The FHA nanorods with different ratios were incorporated in the matrix to examine fluoride ion release and pH changes in the Simulated Body Fluid (SBF) and their mechanical properties. The resin without FHA reinforcement was used as the control sample. The Diametral Tensile Strength (DTS), Flexural Strength (FS), and Flexural Modulus (FM) of the reinforced composite were found to be higher compared to the control sample; the values increased from 34.8 to 45.4 MPa, 76.5 to 99.4 MPa, and 1.7 to 2.5 GPa, respectively. Moreover, findings revealed that the pH is reduced by releasing the fluoride ions into the SBF which can be effective for preventing secondary caries. The most ...
ABSTRACT Bioactive glasses represent a class of attractive materials in bone reconstruction. This... more ABSTRACT Bioactive glasses represent a class of attractive materials in bone reconstruction. This study describes the detailed preparation and characterization of a silicate-based bioactive glass-ceramic (R-SBgC). Synthesis of bioactive glasses using the sol–gel method has advantages compared to the melting method. However, expensive raw materials are required and pose a major issue. To overcome this, R-SBgC was synthesized via the sol–gel method using Rice Husk (RH) as a natural silica precursor. The RH was heat treated and used as an alternative to tetraethyl orthosilicate (TEOS), which is a common synthetic silica precursor. X-ray diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM) were used to characterize the rice husk ash (RHA). The findings reveal that the extracted silica has a high purity (~ 99%). The synthesized R-SBgC powder was characterized using SEM, Energy Dispersive X-ray Analysis (EDX), XRD, XRF and Fourier-Transform Infrared Spectroscopy (FTIR) to complete the morphological and elemental analysis. Moreover, in vitro bioactivity via an immersion assessment was conducted for up to 14 days. The HA layer formation, which is an indicator of the bioactivity on the surface of the R-SBgC, was confirmed using SEM, EDX and further by FTIR. Biocompatibility of the R-SBgC was evaluated in vitro. After 3 days of human bone marrow stromal cell (hBMSC) seeding, SEM analysis revealed cell attachment on the surface of the R-SBgC. Alamar blue and XTT cytotoxic assays demonstrated cell proliferation abilities and the non-cytotoxic effect of the R-SBgC. Altogether, the results demonstrate that prepared rice husk-derived bioactive glass ceramic may be a promising carrier for tissue engineering applications.
Bioactive glasses represent a class of attractive materials in bone reconstruction. This study de... more Bioactive glasses represent a class of attractive materials in bone reconstruction. This study describes the detailed preparation and characterization of a silicate-based bioactive glass-ceramic (R-SBgC). Synthesis of bioactive glasses using the sol–gel method has advantages compared to the melting method. However, expensive raw materials are required and pose a major issue. To overcome this, R-SBgC was synthesized via the sol–gel method using Rice Husk (RH) as a natural silica precursor. The RH was heat treated and used as an alternative to tetraethyl orthosilicate (TEOS), which is a common synthetic silica precursor. X-ray diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM) were used to characterize the rice husk ash (RHA). The findings reveal that the extracted silica has a high purity (~ 99%). The synthesized R-SBgC powder was characterized using SEM, Energy Dispersive X-ray Analysis (EDX), XRD, XRF and Fourier-Transform Infrared Spectroscopy (FTIR) to complete the morphological and elemental analysis. Moreover, in vitro bioactivity via an immersion assessment was conducted for up to 14 days. The HA layer formation, which is an indicator of the bioactivity on the surface of the R-SBgC, was confirmed using SEM, EDX and further by FTIR. Biocompatibility of the R-SBgC was evaluated in vitro. After 3 days of human bone marrow stromal cell (hBMSC) seeding, SEM analysis revealed cell attachment on the surface of the R-SBgC. Alamar blue and XTT cytotoxic assays demonstrated cell proliferation abilities and the non-cytotoxic effect of the R-SBgC. Altogether, the results demonstrate that prepared rice husk-derived bioactive glass ceramic may be a promising carrier for tissue engineering applications.
Fluoridated hydroxyapatite (FHA) in nanorod morphology and hexagonal cross section were synthesis... more Fluoridated hydroxyapatite (FHA) in nanorod morphology and hexagonal cross section were synthesised via hydrothermal process using Apricot Tree Gum (ATG) as a surfactant. The synthesised FHA nanorods were then used as reinforcement in bisphenol A-glycol dimethacrylate (Bis-GMA) as base monomer of composite matrix. The FHA nanorods with different ratios were incorporated in the matrix to examine fluoride ion release and pH changes in the Simulated Body Fluid (SBF) and their mechanical properties. The resin without FHA reinforcement was used as the control sample. The Diametral Tensile Strength (DTS), Flexural Strength (FS), and Flexural Modulus (FM) of the reinforced composite were found to be higher compared to the control sample; the values increased from 34.8 to 45.4 MPa, 76.5 to 99.4 MPa, and 1.7 to 2.5 GPa, respectively. Moreover, findings revealed that the pH is reduced by releasing the fluoride ions into the SBF which can be effective for preventing secondary caries. The most optimum mechanical properties were achieved with 0.2 wt% of FHA reinforcement. The FHA nanocomposite meets the minimum standard requirements for dental applications and compared to other dental composites has advantage of preventing formation of secondary caries due to release of fluoride.
Nanosized hydroxyapatite is a material that is commonly used as a matrix for bone tissue engineer... more Nanosized hydroxyapatite is a material that is commonly used as a matrix for bone tissue engineering. Although its chemical property is similar to that of natural bone, its limited antibacterial property has made it less desirable for use in present-day clinical applications. In the present study, we have investigated the possibility of improving the antibacterial and bioactivity of hydroxyapatite, by producing nanosized silver-containing fluorapatite, using the microwave technique.
Nanosized silver–fluorapatite particles were synthesized using 0.5 and 1=x fluoride through co-precipitation and the microwave refluxing treatment at 800 W, for 8 min. The crystalline phase, chemical composition, and morphology of the prepared samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM). The chemical analysis indicated the presence of a nanosized silver-fluorapatite phase. Transmission electron microscopy analysis showed a spheroid-like morphology, with an approximate diameter of ±76–92 nm. The bioactivity of the prepared samples, which was evaluated using simulated body fluid (SBF) immersion for 28 days, demonstrated good apatite layer formation. The antibacterial activity was evaluated using the disk diffusion method and showed good growth inhibition, while the osteoblast culture studies indicated that the presence of silver and fluoride provided superior cell attachment and growth. The antibacterial and cell culture results indicated that this new nanosized silver–fluorapatite bioceramic material had good antibacterial qualities, but remained biocompatible with osteoblasts. These findings suggested that nanosized silver–fluorapatite could potentially be used for bone regeneration applications.
Uploads
Papers by Farnaz Naghizadeh
Nanosized silver–fluorapatite particles were synthesized using 0.5 and 1=x fluoride through co-precipitation and the microwave refluxing treatment at 800 W, for 8 min. The crystalline phase, chemical composition, and morphology of the prepared samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM). The chemical analysis indicated the presence of a nanosized silver-fluorapatite phase. Transmission electron microscopy analysis showed a spheroid-like morphology, with an approximate diameter of ±76–92 nm. The bioactivity of the prepared samples, which was evaluated using simulated body fluid (SBF) immersion for 28 days, demonstrated good apatite layer formation. The antibacterial activity was evaluated using the disk diffusion method and showed good growth inhibition, while the osteoblast culture studies indicated that the presence of silver and fluoride provided superior cell attachment and growth. The antibacterial and cell culture results indicated that this new nanosized silver–fluorapatite bioceramic material had good antibacterial qualities, but remained biocompatible with osteoblasts. These findings suggested that nanosized silver–fluorapatite could potentially be used for bone regeneration applications.
Nanosized silver–fluorapatite particles were synthesized using 0.5 and 1=x fluoride through co-precipitation and the microwave refluxing treatment at 800 W, for 8 min. The crystalline phase, chemical composition, and morphology of the prepared samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM). The chemical analysis indicated the presence of a nanosized silver-fluorapatite phase. Transmission electron microscopy analysis showed a spheroid-like morphology, with an approximate diameter of ±76–92 nm. The bioactivity of the prepared samples, which was evaluated using simulated body fluid (SBF) immersion for 28 days, demonstrated good apatite layer formation. The antibacterial activity was evaluated using the disk diffusion method and showed good growth inhibition, while the osteoblast culture studies indicated that the presence of silver and fluoride provided superior cell attachment and growth. The antibacterial and cell culture results indicated that this new nanosized silver–fluorapatite bioceramic material had good antibacterial qualities, but remained biocompatible with osteoblasts. These findings suggested that nanosized silver–fluorapatite could potentially be used for bone regeneration applications.