Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
  • Behnam Taebi is associate professor in ethics of technology at Delft University of Technology, and associate with the... moreedit
Research Interests:
New technology brings great benefits, but it can also create new and significant risks. When evaluating those risks in policymaking, there is a tendency to focus on social acceptance. By solely focusing on social acceptance, we could,... more
New technology brings great benefits, but it can also create new and significant risks. When evaluating those risks in policymaking, there is a tendency to focus on social acceptance. By solely focusing on social acceptance, we could, however, overlook important ethical aspects of technological risk, particularly when we evaluate technologies with transnational and inter-generational risks. I argue that good governance of risky technology requires analyzing both social acceptance and ethical acceptability. Conceptually, these two notions are mostly complementary. Social acceptance studies are not capable of sufficiently capturing all the morally relevant features of risky technologies; ethical analyses do not typically include stakeholders' opinions, and they therefore lack the relevant empirical input for a thorough ethical evaluation. Only when carried out in conjunction are these two types of analysis relevant to national and international governance of risky technology. I discuss the Rawlsian wide reflective equilibrium as a method for marrying social acceptance and ethical acceptability. Although the rationale of my argument is broadly applicable, I will examine the case of multinational nuclear waste repositories in particular. This example will show how ethical issues may be overlooked if we focus only on social acceptance, and will provide a test case for demonstrating how the wide reflective equilibrium can help to bridge the proverbial acceptance-acceptability gap.
Research Interests:
A joint effort by the University of California at Berkeley and Delft University of Technology to develop a graduate engineering ethics course for PhD students encountered two types of challenges: academic and institutional. Academically ,... more
A joint effort by the University of California at Berkeley and Delft University of Technology to develop a graduate engineering ethics course for PhD students encountered two types of challenges: academic and institutional. Academically , long-term collaborative research efforts between engineering and philosophy faculty members might be needed before successful engineering ethics courses can be initiated; the teaching of ethics to engineering graduate students and collaborative research need to go hand-in-hand. Institutionally, both bottom-up approaches at the level of the faculty and as a joint research and teaching effort, and top-down approaches that include recognition by a University's administration and the top level of education management, are needed for successful and sustainable efforts to teach engineering ethics.
Research Interests:
Research Interests:
This paper reflects on the various possible nuclear power production methods from an ethical perspective. The production and consumption of nuclear power give rise to the problem of intergenerational justice; in other words, we are... more
This paper reflects on the various possible nuclear power production methods from an ethical perspective. The production and consumption of nuclear power give rise to the problem of intergenerational justice; in other words, we are depleting a nonrenewable resource in the form of uranium while the radiotoxic waste that is generated carries very long-term potential burdens. I argue that the morally desirable option should therefore be to seek to safeguard the interests of future generations. The present generation has at least two duties with regard to posterity: (1) not to jeopardize the safety and security of future generations or impose any harm upon them and (2) to sustain future well-being insofar as that is possible with the available energy resources. These duties are presented as pluralist prima facie duties (or duty-imposing reasons) thus implying that they could well be overruled by morally more compelling duties. If we are unable to fulfill both these prima facie duties simultaneously, it should be particularly the duty not to impose harm on posterity that should be the leading incentive behind nuclear power production. This supports the arguments in favor of the introduction of a new fuel cycle (partitioning and transmutation) that can substantially reduce the waste lifetime and therefore also potential future burdens. However, the further development and application of this scientifically proven but not yet industrialized fuel cycle give rise to additional burdens for contemporaries. This paper examines the extent of the moral stringency of the no harm duty sought for situations in which future interest should guide us in our choosing of a certain technology.
Alternative fuel cycles are being considered in an effort to prolong uranium fuel supplies for thousands of years to come and to manage nuclear waste. These strategies bring with them different benefits and burdens for the present... more
Alternative fuel cycles are being considered in an effort to prolong uranium fuel supplies for thousands of years to come and to manage nuclear waste. These strategies bring with them different benefits and burdens for the present generation and for future generations. In this article, we present a method that provides insight into future fuel cycle alternatives and into the conflicts arising between generations within the framework of intergenerational equity. A set of intersubjective values is drawn from the notion of sustainable development. By operationalizing these values and mapping out their impacts, value criteria are introduced for the assessment of fuel cycles, which are based on the distribution of burdens and benefits between generations. The once-through fuel cycle currently deployed in the United States and three future fuel cycles are subsequently assessed according to these criteria. The four alternatives are then compared in an integrated analysis in which we shed light on the implicit tradeoffs made by decisionmakers when they choose a certain fuel cycle. When choosing a fuel cycle, what are the societal costs and burdens accepted for each generation and how can these factors be justified? This article presents an integrated decision-making method, which considers intergenerational aspects of such decisions; this method could also be applied to other technologies.