Current hormone withdrawal therapies used for treatment of advanced prostate cancer lead to androgen-independent tumor growth. Increased prostatic neuroendocrine (NE) cell density has been implicated in promoting progression of prostate... more
Current hormone withdrawal therapies used for treatment of advanced prostate cancer lead to androgen-independent tumor growth. Increased prostatic neuroendocrine (NE) cell density has been implicated in promoting progression of prostate cancer, but the process by which ...
Relaxin was recently implicated as a regulator of breast and prostate cancer progression. We characterized upregulated H2 relaxin gene expression during neuroendocrine differentiation of the human prostate cancer model, LNCaP. To examine... more
Relaxin was recently implicated as a regulator of breast and prostate cancer progression. We characterized upregulated H2 relaxin gene expression during neuroendocrine differentiation of the human prostate cancer model, LNCaP. To examine the impact of relaxin on host cells associated with prostatic adenocarcinomas, we generated recombinant 6 His-tagged relaxin (RLXH) in a mammalian expression system. This immunoreactive and biologically active
Apoptosis and inhibition of mitosis are primary mechanisms mediating androgen ablation therapy-induced regression of prostate cancer (PCa). However, PCa readily becomes androgen independent, leading to fatal disease. Up-regulated growth... more
Apoptosis and inhibition of mitosis are primary mechanisms mediating androgen ablation therapy-induced regression of prostate cancer (PCa). However, PCa readily becomes androgen independent, leading to fatal disease. Up-regulated growth and survival signaling is implicated in de- velopment of resistance to androgen ablation therapy. We are testing the hypothesis that insulin-like growth factor (IGF) responsiveness is required for androgen-independent (AI) progression.
Activation of alternative growth factor pathways after androgen withdrawal is one mechanism mediating androgen-independent (AI) progression in advanced prostate cancer. Insulin-like growth factor (IGF) I activation is modulated by a... more
Activation of alternative growth factor pathways after androgen withdrawal is one mechanism mediating androgen-independent (AI) progression in advanced prostate cancer. Insulin-like growth factor (IGF) I activation is modulated by a family of IGF binding proteins (IGFBPs). Although IGFBP-2 is one of the most commonly overexpressed genes in hormone refractory prostate cancer, the functional significance of changes in IGF-I signaling during AI progression remains poorly defined. In this article, we characterize changes in IGFBP-2 in the LNCaP tumor model after androgen withdrawal and evaluate its functional significance in AI progression using gain-of-function and loss-of-function analyses. IGFBP-2 mRNA and protein levels increase 2-3-fold after androgen withdrawal in LNCaP cells in vitro in LNCaP tumors during AI progression in vivo. Increased IGFBP-2 levels after castration were also identified using a human prostate tissue microarray of untreated and posthormone therapy-treated pro...
Castrate-resistant prostate cancer (CRPC) progression is a complex process by which prostate cells acquire the ability to survive and proliferate in the absence or under very low levels of androgens. Most CRPC tumors continue to express... more
Castrate-resistant prostate cancer (CRPC) progression is a complex process by which prostate cells acquire the ability to survive and proliferate in the absence or under very low levels of androgens. Most CRPC tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes owing to reactivation of AR. Protein tyrosine kinases have been implicated in supporting AR activation under castrate conditions. Here we report that Lyn tyrosine kinase expression is upregulated in CRPC human specimens compared with hormone naive or normal tissue. Lyn overexpression enhanced AR transcriptional activity both in vitro and in vivo and accelerated CRPC. Reciprocally, specific targeting of Lyn resulted in a decrease of AR transcriptional activity in vitro and in vivo and prolonged time to castration. Mechanistically, we found that targeting Lyn kinase induces AR dissociation from the molecular chaperone Hsp90, leading to its ubiquitination and proteasomal degradation. This w...
Insulin-like growth factor (IGF) signaling is associated with castrate-resistant prostate cancer (CRPC) progression. Insulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from IGF1 receptor (IGF1R),... more
Insulin-like growth factor (IGF) signaling is associated with castrate-resistant prostate cancer (CRPC) progression. Insulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from IGF1 receptor (IGF1R), insulin receptor, and other oncoproteins. This study demonstrates that IRS1/2 expression is increased in prostate cancer, and persists in CRPC. Furthermore, this study assesses the anticancer activity of NT157, a small molecule tyrphostin targeting IRS proteins, using androgen-responsive (LNCaP) and -independent (PC3) prostate cancer cells in vitro and in vivo. NT157 treatment resulted in dose-dependent inhibition of IGF1R activation, suppression of IRS protein expression, inhibition of IGF1-induced AKT activation, but increased ERK activation in NT157-treated cells in vitro. These effects were correlated with decreased proliferation and increasing apoptosis of LNCaP cells and increasing G2-M arrest in PC3 cells. NT157 also suppressed androgen-respons...