Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. In this work, we present an extended version of DEC on surface meshes formed by general polygons that bypasses the construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it satisfies the Leibniz product rule. Based on the discrete wedge product, we then derive a novel primal–to–primal Hodge star operator, which then leads to a discrete version of the contraction operator and the Lie derivative on discrete 0-, 1-, and 2-forms. We show results of numerical tests indicating the experimental convergence of our discretization to each one of these operators.
Discrete exterior calculus (DEC) offers a coordinate–free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate–free discretization of exterior calculus especially suited for computations on curved spaces. In this work, we present an extended version of DEC on surface meshes formed by general polygons that bypasses the need for combinatorial subdivision and does not involve any dual mesh. At its core, our approach introduces a new polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it satisfies the Leibniz product rule. Based on the discrete wedge product, we then derive a novel primal–to–primal Hodge star operator. Combining these three ‘basic operators’ we then define new discrete versions of the contraction operator and Lie derivative, codifferential and Laplace operator. We discuss the numerical convergence of each one of these proposed operators and compare them to existing DEC methods. Finally, we show simple applications of our operators on Helmholtz–Hodge decomposition, Laplacian surfac...
Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. We present an extended version of DEC on surface meshes formed by general polygons that bypasses the construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it obeys the Leibniz rule. Based on this wedge product, we derive a novel primal–primal Hodge star operator, which then leads to a discrete version of the contraction operator. We show preliminary results indicating the numerical convergence of our discretization to each one of these operators. CCS Concepts •Computing methodologies → Mesh geometry models;
Discrete exterior calculus (DEC) offers a coordinate–free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate–free discretization of exterior calculus especially suited for computations on curved spaces. In this work, we present an extended version of DEC on surface meshes formed by general polygons that bypasses the need for combinatorial subdivision and does not involve any dual mesh. At its core, our approach introduces a new polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it satisfies the Leibniz product rule. Based on the discrete wedge product, we then derive a novel primal–to–primal Hodge star operator. Combining these three ‘basic operators’ we then define new discrete versions of the contraction operator and Lie derivative, codifferential and Laplace operator. We discuss the numerical convergence of each one of these proposed operators and compare them to existing DEC methods. Finally, we show simple applications of our operators on Helmholtz–Hodge decomposition, Laplacian surface fairing, and Lie advection of functions and vector fields on meshes formed by general polygons.
Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. We present an extended version of DEC on surface meshes formed by general polygons that bypasses the construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it obeys the Leibniz rule. Based on this wedge product, we derive a novel primal–primal Hodge star operator, which then leads to a discrete version of the contraction operator. We show preliminary results indicating the numerical convergence of our discretization to each one of these operators.
Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. In this work, we present an extended version of DEC on surface meshes formed by general polygons that bypasses the construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it satisfies the Leibniz product rule. Based on the discrete wedge product, we then derive a novel primal–to–primal Hodge star operator, which then leads to a discrete version of the contraction operator and the Lie derivative on discrete 0-, 1-, and 2-forms. We show results of numerical tests indicating the experimental convergence of our discretization to each one of these operators.
Discrete exterior calculus (DEC) offers a coordinate–free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate–free discretization of exterior calculus especially suited for computations on curved spaces. In this work, we present an extended version of DEC on surface meshes formed by general polygons that bypasses the need for combinatorial subdivision and does not involve any dual mesh. At its core, our approach introduces a new polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it satisfies the Leibniz product rule. Based on the discrete wedge product, we then derive a novel primal–to–primal Hodge star operator. Combining these three ‘basic operators’ we then define new discrete versions of the contraction operator and Lie derivative, codifferential and Laplace operator. We discuss the numerical convergence of each one of these proposed operators and compare them to existing DEC methods. Finally, we show simple applications of our operators on Helmholtz–Hodge decomposition, Laplacian surfac...
Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. We present an extended version of DEC on surface meshes formed by general polygons that bypasses the construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it obeys the Leibniz rule. Based on this wedge product, we derive a novel primal–primal Hodge star operator, which then leads to a discrete version of the contraction operator. We show preliminary results indicating the numerical convergence of our discretization to each one of these operators. CCS Concepts •Computing methodologies → Mesh geometry models;
Discrete exterior calculus (DEC) offers a coordinate–free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate–free discretization of exterior calculus especially suited for computations on curved spaces. In this work, we present an extended version of DEC on surface meshes formed by general polygons that bypasses the need for combinatorial subdivision and does not involve any dual mesh. At its core, our approach introduces a new polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it satisfies the Leibniz product rule. Based on the discrete wedge product, we then derive a novel primal–to–primal Hodge star operator. Combining these three ‘basic operators’ we then define new discrete versions of the contraction operator and Lie derivative, codifferential and Laplace operator. We discuss the numerical convergence of each one of these proposed operators and compare them to existing DEC methods. Finally, we show simple applications of our operators on Helmholtz–Hodge decomposition, Laplacian surface fairing, and Lie advection of functions and vector fields on meshes formed by general polygons.
Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus esp... more Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. We present an extended version of DEC on surface meshes formed by general polygons that bypasses the construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it obeys the Leibniz rule. Based on this wedge product, we derive a novel primal–primal Hodge star operator, which then leads to a discrete version of the contraction operator. We show preliminary results indicating the numerical convergence of our discretization to each one of these operators.
Uploads
Thesis Chapters by Lenka Ptackova
Papers by Lenka Ptackova