Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
BackgroundMalaria is still a major global health burden, with more than 3.2 billion people in 91 countries remaining at risk of the disease. Accurately distinguishing malaria from other diseases, especially uncomplicated malaria (UM) from... more
BackgroundMalaria is still a major global health burden, with more than 3.2 billion people in 91 countries remaining at risk of the disease. Accurately distinguishing malaria from other diseases, especially uncomplicated malaria (UM) from non-malarial infections (nMI) remains a challenge. Furthermore, the success of rapid diagnostic tests (RDT) is threatened by Pfhrp2/3 deletions and decreased sensitivity at low parasitemia. Analysis of haematological indices can be used to support identification of possible malaria cases for further diagnosis, especially in travelers returning from endemic areas. As a new application for precision medicine, we aimed to evaluate machine learning (ML) approaches that can accurately classify nMI, UM and severe malaria (SM) using haematological parameters.MethodsWe obtained haematological data from 2,207 participants collected in Ghana; nMI (n=978), UM (n=526), and SM (n=703). Six different machine learning approaches were tested, to select the best ap...
We report new molecular evidence of locally acquired dengue virus infections in Ghana. We detected dengue viral RNA among children with suspected malaria by using a multipathogen real-time PCR. Subsequent sequence analysis revealed a... more
We report new molecular evidence of locally acquired dengue virus infections in Ghana. We detected dengue viral RNA among children with suspected malaria by using a multipathogen real-time PCR. Subsequent sequence analysis revealed a close relationship with dengue virus serotype 2, which was implicated in a 2016 outbreak in Burkina Faso.
We report new molecular evidence of locally acquired dengue virus infections in Ghana. We detected dengue viral RNA among children with suspected malaria by using a multipathogen real-time PCR. Subsequent sequence analysis revealed a... more
We report new molecular evidence of locally acquired dengue virus infections in Ghana. We detected dengue viral RNA among children with suspected malaria by using a multipathogen real-time PCR. Subsequent sequence analysis revealed a close relationship with dengue virus serotype 2, which was implicated in a 2016 outbreak in Burkina Faso.
ABSTRACT
ABSTRACT
Plasmodium falciparum uses a variety of alternative ligand-receptor interactions in order to invade red blood cells. The diversity of these pathways has traditionally been investigated by assessing the ability of parasite isolates to... more
Plasmodium falciparum uses a variety of alternative ligand-receptor interactions in order to invade red blood cells. The diversity of these pathways has traditionally been investigated by assessing the ability of parasite isolates to invade red blood cells that have been enzyme treated to selectively remove receptors. To date a variety of assay formats have been reported in different studies, but a standardised assay has not been applied to compare across population samples from diverse locations. Here we investigate P. falciparum invasion phenotypes from clinical isolates sampled in three sites on a gradient of transmission intensity in West Africa, using a single assay format. This is the first large-scale comparative analysis of erythrocyte invasion by clinical isolates from different endemic countries assayed in a single laboratory. Assays were performed on over 100 P. falciparum isolates from Ghana, Guinea and Senegal, that were cryopreserved at source and thawed so that the la...
Genome wide sequence analyses of malaria parasites from widely separated areas of the world have identified contrasting population structures and signatures of selection. To compare relatively closely situated but ecologically contrasting... more
Genome wide sequence analyses of malaria parasites from widely separated areas of the world have identified contrasting population structures and signatures of selection. To compare relatively closely situated but ecologically contrasting regions within an endemic African country, population samples of Plasmodium falciparum clinical isolates were collected in Ghana from Kintampo in the central forest-savannah area, and Navrongo in a drier savannah area ~350 km to the north with more seasonally-restricted transmission. Parasite DNA was sequenced and paired-end reads mapped to the P. falciparum reference genome. High coverage genome wide sequence data for 85 different clinical isolates enabled analysis of 121,712 single nucleotide polymorphisms (SNPs). The local populations had similar proportions of mixed genotype infections, similar SNP allele frequency distributions, and eleven chromosomal regions had elevated integrated haplotype scores (|iHS|) in both. A between-population Rsb metric comparing extended haplotype homozygosity indicated a stronger signal within Kintampo for one of these regions (on chromosome 14) and in Navrongo for two of these regions (on chromosomes 10 and 13). At least one gene in each of these identified regions is a potential target of locally varying selection. The candidates include genes involved in parasite development in mosquitoes, members of variant-expressed multigene families, and a leading vaccine-candidate target of immunity. Against a background of very similar population structure and selection signatures in the P. falciparum populations of Ghana, three narrow genomic regions showed evidence indicating local differences in historical timing or intensity of selection. Sampling of closely situated populations across heterogeneous environments has potential to refine the mapping of important loci under temporally or spatially varying selection.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most widespread enzyme defect that can result in red cell breakdown under oxidative stress when exposed to certain medicines including antimalarials. We evaluated the diagnostic... more
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most widespread enzyme defect that can result in red cell breakdown under oxidative stress when exposed to certain medicines including antimalarials. We evaluated the diagnostic accuracy of CareStart G6PD deficiency Rapid Diagnostic Test (RDT) as a point-of-care tool for screening G6PD deficiency. A cross-sectional study was conducted among 206 randomly selected and consented participants from a group with known G6PD deficiency status between February 2013 and June 2013. A maximum of 1.6ml of capillary blood samples were used for G6PD deficiency screening using CareStart G6PD RDT and Trinity qualitative with Trinity quantitative methods as the "gold standard". Samples were also screened for the presence of malaria parasites. Data entry and analysis were done using Microsoft Access 2010 and Stata Software version 12. Kintampo Health Research Centre Institutional Ethics Committee granted ethical approval. The sensiti...
 Plasmodium falciparum invades human erythrocytes using an array of ligands which interact with several receptors including sialic acid (SA), complement receptor 1 (CR1), and basigin. We hypothesized that in malaria-endemic areas,... more
 Plasmodium falciparum invades human erythrocytes using an array of ligands which interact with several receptors including sialic acid (SA), complement receptor 1 (CR1), and basigin. We hypothesized that in malaria-endemic areas, parasites vary invasion pathways under immune pressure. Therefore, invasion mechanisms of clinical isolates collected from three zones of Ghana with different levels of endemicity (Accra<Navrongo<Kintampo) were compared using standardized methods.  Blood samples were collected from children aged 2-14 years diagnosed with malaria and erythrocyte invasion phenotypes were determined using the enzymes neuraminidase, chymotrypsin and trypsin, which differentially cleave receptors from the erythrocyte surface. In addition, antibodies against CR1 and basigin were used to determine the contributions of these receptors to invasion. Gene expression levels of P. falciparum invasion ligands were also examined.  The parasites generally expressed SA-independent in...
Whether the risk of malaria is increased in infants born to mothers who experience malaria during pregnancy is uncertain.  We investigated malaria incidence among an infant cohort born to 355 primigravidae and 1500 multigravidae with or... more
Whether the risk of malaria is increased in infants born to mothers who experience malaria during pregnancy is uncertain.  We investigated malaria incidence among an infant cohort born to 355 primigravidae and 1500 multigravidae with or without placental malaria (PM) in a high malaria transmission area of Ghana. PM was assessed using placental histology. The incidence of all episodes of malaria parasitemia or clinical malaria was very similar among 3 groups of infants: those born to multigravidae without PM, multigravidae with PM, and primigravidae with PM. Infants born to primigravidae without PM experienced a lower incidence of malaria parasitemia or clinical malaria than the other 3 groups: adjusted hazard ratio, 0.64 (95% confidence interval [CI], .48-.86, P < .01) and 0.60 (95% CI, .43-.84, P < .01), respectively. The incidence of malaria parasitemia or clinical malaria was about 2 times higher in most poor infants compared to least poor infants. There was no suggestion that exposure to PM directly increased incidence of malaria among infants of multigravidae. In our study area, absence of placental malaria in primigravidae is a marker of low exposure, and this probably explains the lower incidence of malaria-related outcomes among infants of PM-negative primigravidae.