Exome sequencing revealed a homozygous missense mutation (c.317C&... more Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.
The Journal of Clinical Endocrinology & Metabolism, 2010
Short stature has an incidence of three in 100 in children. Reliable molecular genetic testing ma... more Short stature has an incidence of three in 100 in children. Reliable molecular genetic testing may be crucial in the context of beneficial disease management. Deletions spanning or surrounding the SHOX gene account for a significant proportion of patients with idiopathic short stature (ISS) and allied disorders, such as Leri-Weill dyschondrosteosis. Several shortcomings of current strategies for copy number profiling of the SHOX region prompted us to develop an improved test for molecular diagnostics of the SHOX region. We introduced a quantitative PCR (qPCR)-based copy number profiling test, consisting of 11 amplicons targeting clinically relevant regions, i.e. the SHOX gene and regulatory regions. To ensure an optimal sensitivity and specificity, this test was validated in 32 controls and 18 probands with previously identified copy number changes. In addition, 152 probands with SHOX-associated phenotypes were screened, revealing 10 novel copy number changes. This highly validated qPCR test supersedes other approaches for copy number screening of the SHOX region in terms of reliability, accuracy, and cost efficiency. In addition, another strong point is the fact that it can be easily implemented in any standard equipped molecular laboratory. Our qPCR-based test is highly recommended for molecular diagnostics of idiopathic short stature and allied disorders.
Blepharophimosis syndrome (BPES), an autosomal dominant syndrome in which an eyelid malformation ... more Blepharophimosis syndrome (BPES), an autosomal dominant syndrome in which an eyelid malformation is associated (type I) or not (type II) with premature ovarian failure (POF), has recently been ascribed to mutations in FOXL2, a putative forkhead transcription factor gene. We previously reported 22 FOXL2 mutations and suggested a preliminary genotype-phenotype correlation. Here, we describe 21 new FOXL2 mutations (16 novel ones) through sequencing of open reading frame, 5' untranslated region, putative core promoter, and fluorescence in situ hybridization analysis. Our study shows the existence of two mutational hotspots: 30% of FOXL2 mutations lead to polyalanine (poly-Ala) expansions, and 13% are a novel out-of-frame duplication. In addition, this is the first study to demonstrate intra- and interfamilial phenotypic variability (both BPES types caused by the same mutation). Furthermore, the present study allows a revision of the current genotype-phenotype correlation, since we found exceptions to it. We assume that for predicted proteins with a truncation before the poly-Ala tract, the risk for development of POF is high. For mutations leading to a truncated or extended protein containing an intact forkhead and poly-Ala tract, no predictions are possible, since some of these mutations lead to both types of BPES, even within the same family. Poly-Ala expansions may lead to BPES type II. For missense mutations, no correlations can be made yet. Microdeletions are associated with mental retardation. We conclude that molecular testing may be carefully used as a predictor for POF risk in a limited number of mutations.
Exome sequencing revealed a homozygous missense mutation (c.317C&... more Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.
The Journal of Clinical Endocrinology & Metabolism, 2010
Short stature has an incidence of three in 100 in children. Reliable molecular genetic testing ma... more Short stature has an incidence of three in 100 in children. Reliable molecular genetic testing may be crucial in the context of beneficial disease management. Deletions spanning or surrounding the SHOX gene account for a significant proportion of patients with idiopathic short stature (ISS) and allied disorders, such as Leri-Weill dyschondrosteosis. Several shortcomings of current strategies for copy number profiling of the SHOX region prompted us to develop an improved test for molecular diagnostics of the SHOX region. We introduced a quantitative PCR (qPCR)-based copy number profiling test, consisting of 11 amplicons targeting clinically relevant regions, i.e. the SHOX gene and regulatory regions. To ensure an optimal sensitivity and specificity, this test was validated in 32 controls and 18 probands with previously identified copy number changes. In addition, 152 probands with SHOX-associated phenotypes were screened, revealing 10 novel copy number changes. This highly validated qPCR test supersedes other approaches for copy number screening of the SHOX region in terms of reliability, accuracy, and cost efficiency. In addition, another strong point is the fact that it can be easily implemented in any standard equipped molecular laboratory. Our qPCR-based test is highly recommended for molecular diagnostics of idiopathic short stature and allied disorders.
Blepharophimosis syndrome (BPES), an autosomal dominant syndrome in which an eyelid malformation ... more Blepharophimosis syndrome (BPES), an autosomal dominant syndrome in which an eyelid malformation is associated (type I) or not (type II) with premature ovarian failure (POF), has recently been ascribed to mutations in FOXL2, a putative forkhead transcription factor gene. We previously reported 22 FOXL2 mutations and suggested a preliminary genotype-phenotype correlation. Here, we describe 21 new FOXL2 mutations (16 novel ones) through sequencing of open reading frame, 5' untranslated region, putative core promoter, and fluorescence in situ hybridization analysis. Our study shows the existence of two mutational hotspots: 30% of FOXL2 mutations lead to polyalanine (poly-Ala) expansions, and 13% are a novel out-of-frame duplication. In addition, this is the first study to demonstrate intra- and interfamilial phenotypic variability (both BPES types caused by the same mutation). Furthermore, the present study allows a revision of the current genotype-phenotype correlation, since we found exceptions to it. We assume that for predicted proteins with a truncation before the poly-Ala tract, the risk for development of POF is high. For mutations leading to a truncated or extended protein containing an intact forkhead and poly-Ala tract, no predictions are possible, since some of these mutations lead to both types of BPES, even within the same family. Poly-Ala expansions may lead to BPES type II. For missense mutations, no correlations can be made yet. Microdeletions are associated with mental retardation. We conclude that molecular testing may be carefully used as a predictor for POF risk in a limited number of mutations.
Uploads
Papers by E. Baere