Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Douglas Spitz

    The hypothesis that the Akt inhibitor, perifosine (PER), combined with inhibitors of glutathione (GSH) and thioredoxin (Trx) metabolism will induce cytotoxicity via metabolic oxidative stress in human head and neck cancer (HNSCC) cells... more
    The hypothesis that the Akt inhibitor, perifosine (PER), combined with inhibitors of glutathione (GSH) and thioredoxin (Trx) metabolism will induce cytotoxicity via metabolic oxidative stress in human head and neck cancer (HNSCC) cells was tested. PER induced increases in glutathione disulfide (%GSSG) in FaDu, Cal-27, and SCC-25 HNSCCs as well as causing significant clonogenic cell killing in FaDu and Cal-27, which was suppressed by simultaneous treatment with N-acetylcysteine (NAC). An inhibitor of GSH synthesis, buthionine sulfoximine (BSO), sensitized Cal-27 and SCC-25 cells to PER-induced clonogenic killing as well as decreased total GSH and increased %GSSG. Additionally, inhibition of thioredoxin reductase activity (TrxRed) with auranofin (AUR) was able to induce PER sensitization in SCC-25 cells that were initially refractory to PER. These results support the conclusion that PER induces oxidative stress and clonogenic killing in HNSCC cells that is enhanced with inhibitors of ...
    Redox regulation of epidermal growth factor receptor (EGFR) signaling helps protect cells against oxidative stress. In this study, we investigated whether the cytotoxicity of an EGFR tyrosine kinase inhibitor, erlotinib (ERL), was... more
    Redox regulation of epidermal growth factor receptor (EGFR) signaling helps protect cells against oxidative stress. In this study, we investigated whether the cytotoxicity of an EGFR tyrosine kinase inhibitor, erlotinib (ERL), was mediated by induction of oxidative stress in human head and neck cancer (HNSCC) cells. ERL elicited cytotoxicity in vitro and in vivo while increasing a panel of oxidative stress parameters which were all reversible by the antioxidant N-acetyl cysteine. Knockdown of EGFR by using siRNA similarly increased these oxidative stress parameters. Overexpression of mitochondrial targeted catalase but not superoxide dismutase reversed ERL-induced cytotoxicity. Consistent with a general role for NADPH oxidase (NOX) enzymes in ERL-induced oxidative stress, ERL-induced cytotoxicity was reversed by diphenylene iodonium, a NOX complex inhibitor. ERL reduced the expression of NOX1, NOX2, and NOX5 but induced the expression of NOX4. Knockdown of NOX4 by using siRNA protec...
    Ketogenic diets are low in carbohydrates and high in fat, which forces cells to rely more heavily upon mitochondrial oxidation of fatty acids for energy. Relative to normal cells, cancer cells are believed to exist under a condition of... more
    Ketogenic diets are low in carbohydrates and high in fat, which forces cells to rely more heavily upon mitochondrial oxidation of fatty acids for energy. Relative to normal cells, cancer cells are believed to exist under a condition of chronic mitochondrial oxidative stress that is compensated for by increases in glucose metabolism to generate reducing equivalents. In this study we tested the hypothesis that a ketogenic diet concurrent with radiation and chemotherapy would be clinically tolerable in locally advanced non-small cell lung cancer (NSCLC) and pancreatic cancer and could potentially exploit cancer cell oxidative metabolism to improve therapeutic outcomes. Mice bearing MIA PaCa-2 pancreatic cancer xenografts were fed either a ketogenic diet or standard rodent chow, treated with conventionally fractionated radiation (2 Gy/fraction), and tumor growth rates were assessed daily. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modfied proteins as a marker of ...
    Purpose: Ketogenic diets are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to... more
    Purpose: Ketogenic diets are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to normal cells) are believed to exist in a state of chronic oxidative stress mediated by mitochondrial metabolism. The current study tests the hypothesis that ketogenic diets enhance radio-chemo-therapy responses in lung cancer xenografts by enhancing oxidative stress. Experimental Design: Mice bearing NCI-H292 and A549 lung cancer xenografts were fed a ketogenic diet (KetoCal 4:1 fats: proteins+carbohydrates) and treated with either conventionally fractionated (1.8–2 Gy) or hypofractionated (6 Gy) radiation as well as conventionally fractionated radiation combined with carboplatin. Mice weights and tumor size were monitored. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)–modified proteins as a marker of oxidative stress as well as prol...
    Tumor cell proliferation, de-differentiation, and progression depend on a complex combination of altered cell cycle regulation, excessive growth factor pathway activation, and decreased apoptosis. The understanding of these complex... more
    Tumor cell proliferation, de-differentiation, and progression depend on a complex combination of altered cell cycle regulation, excessive growth factor pathway activation, and decreased apoptosis. The understanding of these complex mechanisms should lead to the identification of potential targets for therapeutic intervention. Redox-sensitive signaling factors also regulate multiple cellular processes including proliferation, cell cycle, and pro-survival signaling cascades, suggesting their potential as molecular targets for anticancer agents. These observations suggest that redox-sensitive signaling factors may be potential novel molecular markers. We hypothesized that thioredoxin reductase-1 (TR), a component of several redox-regulated pathways, may represent a potential molecular target candidate in response to agents that induce oxidative stress. There have been numerous biological studies over the last decade investigating the cell biological, biochemical, and genetic properties of TR both in culture and in in vivo models. In addition, using a series of permanent cell lines that express either a wild-type TR or a dominant mutant TR gene or a chemical agent that inhibits TR we demonstrated that TR meets most criteria that would identify a molecular target. Based on these results we believe TR is a potential molecular target and discuss potential clinical possibilities.
    Malignant cells have a demonstrably greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells. This has been hypothesized to be due to a higher level of reactive oxygen species (ROS) production in cancer cells... more
    Malignant cells have a demonstrably greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells. This has been hypothesized to be due to a higher level of reactive oxygen species (ROS) production in cancer cells leading to the increased need for reducing equivalents, produced by glucose metabolism, to detoxify hydroperoxides. Because complete glucose deprivation cannot be achieved in vivo, it has been proposed that agents that antagonize glucose metabolism, such as 2-deoxy-D-glucose (2DG), can mimic in vitro glucose deprivation that selectively kills cancer cells by oxidative stress. To test this hypothesis, neuroblastoma cell lines were treated with 2DG and the effects on clonogenic survival and the distribution of cellular phenotypes among surviving colonies was determined. The results showed that all three major cell types found in neuroblastoma (Schwann, Neuronal and Intermediate) were sensitive to 2DG-induced clonogenic cell killing. Furthermore, treatment with the thiol antioxidant, N-acetyl cysteine or with polyethylene glycol-conjugated superoxide dismutase and catalase, protected neuroblastoma cells from 2DG-induced cell killing. Finally normal non-immortalized neural precursor cells were relatively resistant to 2DG-induced cell killing when compared to neuroblastoma cell lines. These results support the hypothesis that inhibitors of glucose metabolism could represent useful adjuvants in the treatment of neuroblastoma by selectively enhancing metabolic oxidative stress.
    Following exposure to 95% oxygen, clonogenic cell survival was assayed and qualitative morphologic changes were observed in a Chinese hamster fibroblast cell line (HA-1). The time in 95% O2 necessary to clonogenically inactivate 90% of... more
    Following exposure to 95% oxygen, clonogenic cell survival was assayed and qualitative morphologic changes were observed in a Chinese hamster fibroblast cell line (HA-1). The time in 95% O2 necessary to clonogenically inactivate 90% of the cells was inversely related to the cell density of the cultures at the beginning of hyperoxic exposure (from 1 to 6 X 10(4) cells/cm2). The O2-induced loss in clonogenicity and evidence of morphologic injury were shown to be significantly delayed (17-22 h) in an H2O2-resistant variant of the parental HA-1 cell line. After the delay in onset of clonogenic cell killing or morphologic injury, the process of injury proceeded in a similar fashion in both cell lines. The H2O2-resistant cell line demonstrated significantly greater catalase activity (20-fold), CuZn superoxide dismutase activity (2-fold), and Se-dependent glutathione peroxidase activity (1.5-fold). The greater activities of CuZn superoxide dismutase and catalase were accompanied by similarly greater quantities of immunoreactive protein as determined by immunoblotting. These data demonstrate that the cells adapted and/or selected for growth in a highly peroxidative environment also became refractory to O2-induced toxicity, which may be related to increased expression of antioxidant enzymes. However, the magnitude of this cross-resistance to O2 toxicity was less than the magnitude of the cellular resistance to the toxicity of exogenous H2O2, suggesting that in this system the toxicity of 95% oxygen is not identical to H2O2-mediated cytotoxicity.
    The biological effects of ionizing radiation (IR) from environmental, medical, and man-made sources, as well as from space exploration are of broad health concern. During the last 40 years it has become evident that, in addition to... more
    The biological effects of ionizing radiation (IR) from environmental, medical, and man-made sources, as well as from space exploration are of broad health concern. During the last 40 years it has become evident that, in addition to short-lived free radical-mediated events initiated within microseconds of exposure and generally thought to dissipate within milliseconds, IR-induced production of reactive oxygen and nitrogen species as well as changes in redox signaling linked to disruption of metabolic processes persist long after radiation exposure. Furthermore, persistent IR-induced increases in the metabolic production of reactive oxygen and nitrogen species appear to significantly contribute to the delayed effects of IR exposure, including induction of adaptive responses at low doses as well as carcinogenesis, fibrosis, inflammation, genomic instability, and acceleration of the onset of degenerative tissue injury processes associated with aging. The ability to identify the specific metabolic mechanisms and dose-response relationships that contribute to adaptive responses as well as persistent IR-induced injury processes holds great promise for identifying novel strategies to mitigate the deleterious effects of IR exposure as well as for gathering mechanistic information critical for risk assessment. This Forum contains original and review articles authored by experts in the field of radiobiology focusing on novel mechanisms involving redox biology and metabolism that significantly contribute to the persistent biological effects seen following IR exposure.
    Over the last three decades, it is has become increasing clear that intracellular signaling pathways are activated via changes in intracellular metabolic oxidation/reduction (redox) reactions involving reactive oxygen species (ROS; i.e.,... more
    Over the last three decades, it is has become increasing clear that intracellular signaling pathways are activated via changes in intracellular metabolic oxidation/reduction (redox) reactions involving reactive oxygen species (ROS; i.e., superoxide and hydrogen peroxide). The initial proposals hypothesized that signaling through metabolic oxidation/reduction (redox) reactions involving ROS could contribute to carcinogenesis and progression to malignancy. Strong evidence for this hypothesis was obtained from studies showing that environmental insults (i.e., ionizing radiation) as well as xenobiotics (i.e., polycyclic aromatic hydrocarbons and phorbol esters) capable of inducing steady-state increases in free radical production and ROS could act as both initiators and promoters of carcinogenesis. This Forum is directed at understanding possible redox signaling mechanisms governing cellular radiation response, tumor growth, and response to therapy, as well as the role of nitric oxide in cancer biology.
    During the course of measuring superoxide dismutase (SOD) activity in rat breast tissue, interferences in the nitroblue tetrazolium (NBT) and cytochrome c assay systems were noted. These interferences inhibit accurate measurement of SOD... more
    During the course of measuring superoxide dismutase (SOD) activity in rat breast tissue, interferences in the nitroblue tetrazolium (NBT) and cytochrome c assay systems were noted. These interferences inhibit accurate measurement of SOD activity in breast tissues, necessitating the development of a new NBT-based assay that includes compounds capable of inhibiting tissue specific interferences. The most effective compounds were metal chelators that were also electron transport chain inhibitors. Bathocuproine sulfonate (BCS) was the most effective of these compounds. The inclusion of BCS in the NBT assay system was shown to make the accurate measurement of SOD activity in tissues with interferences possible.
    Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to... more
    Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H2O2; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O2(⋅-) and H2O2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H2O2. In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy.
    Transforming growth factor β-activated kinase 1 (TAK1) is critical for survival of many KRAS mutated colorectal cancer cells, and TAK1 inhibition with 5Z-7-oxozeaenol has been associated with oxidative stress leading to tumor cell... more
    Transforming growth factor β-activated kinase 1 (TAK1) is critical for survival of many KRAS mutated colorectal cancer cells, and TAK1 inhibition with 5Z-7-oxozeaenol has been associated with oxidative stress leading to tumor cell killing. When SW 620 and HCT 116 human colon cancer cells were treated with 5µM 5Z-7-oxozeaenol, cell viability, growth, and clonogenic survival were significantly decreased. Consistent with TAK1 inhibition being causally related to thiol-mediated oxidative stress, 10mM N-acetylcysteine (NAC) partially reversed the growth inhibitory effects of 5Z-7-oxozeaenol. In addition, 5Z-7-oxozeaenol also increased steady-state levels of H2DCFDA oxidation as well as increased levels of total glutathione (GSH) and glutathione disulfide (GSSG). Interestingly, depletion of GSH using buthionine sulfoximine did not significantly potentiate 5Z-7-oxozeaenol toxicity in either cell line. In contrast, pre-treatment of cells with auranofin (Au) to inhibit thioredoxin reductase ...
    It has been hypothesized that cancer cells increase glucose metabolism to protect against metabolic fluxes of hydro- peroxides via glutathione-dependent peroxidases. 2-Deoxy- D-glucose, inhibits glucose metabolism and has been shown to... more
    It has been hypothesized that cancer cells increase glucose metabolism to protect against metabolic fluxes of hydro- peroxides via glutathione-dependent peroxidases. 2-Deoxy- D-glucose, inhibits glucose metabolism and has been shown to cause cytotoxicity in cancer cells that is partially mediated by disruptions in thiol metabolism. In the current study, human breast cancer cells were continuously treated (24 hours) with 2-deoxy-D-glucose,
    Mutations in genes coding for succinate dehydrogenase (SDH) subunits are believed to contribute to cancer and aging, but the mechanism for this is unclear. Hamster fibroblasts expressing a mutation in SDH subunit C (SDHC; B9) showed... more
    Mutations in genes coding for succinate dehydrogenase (SDH) subunits are believed to contribute to cancer and aging, but the mechanism for this is unclear. Hamster fibroblasts expressing a mutation in SDH subunit C (SDHC; B9) showed 3-fold increases in dihydroethidine and dichlorodihydrofluor- escein (CDCFH2) oxidation indicative of increased steady-state levels of O2 � � and H2O2, increases in glutathione/glutathione disulfide
    This paper examined heat-induced radiosensitization in two Chinese hamster heat-resistant cell lines, HR-1 and OC-14, that were isolated from the same wild-type HA-1 cell line. It found a reduction of the magnitude of heat-induced... more
    This paper examined heat-induced radiosensitization in two Chinese hamster heat-resistant cell lines, HR-1 and OC-14, that were isolated from the same wild-type HA-1 cell line. It found a reduction of the magnitude of heat-induced radiosensitization after exposure to 43 degrees C in both HR-1 and OC-14 cells and a similar reduction after exposure to 45 degrees C in HR-1 cells, but not in OC-14 cells. The effect of heat exposure on a class of ionizing radiation-induced DNA damage that inhibits the ability of nuclear DNA to undergo super-coiling changes was also studied using the fluorescent halo assay in these three cell lines. Wild type cells exposed to either 43 or 45 degrees C before irradiation had a DNA rewinding ability that was intermediate between control and unheated cells, a phenomenon previously described as a masking effect. This masking effect was significantly reduced in HR-1 cells exposed to either 43 or 45 degrees C or in OC-14 cells exposed to 43 degrees C under cond...
    In this study, we found a role for H(2)O(2) in UVA-induced AP-2alpha expression in the HaCaT human keratinocyte cell line. UVA irradiation not only increased AP-2alpha, but also caused accumulation of H(2)O(2) in the cell culture media,... more
    In this study, we found a role for H(2)O(2) in UVA-induced AP-2alpha expression in the HaCaT human keratinocyte cell line. UVA irradiation not only increased AP-2alpha, but also caused accumulation of H(2)O(2) in the cell culture media, and H(2)O(2) by itself could induce the expression of AP-2alpha. By catalyzing the removal of H(2)O(2) from cells through over-expression of GPx-1, induction of AP-2alpha expression by UVA was abolished. Induction of transcription factor AP-2alpha by UVA had been previously shown to be mediated through the second messenger ceramide. We found that not only UVA irradiation, but also H(2)O(2) by itself caused increases of ceramide in HaCaT cells, and C2-ceramide added to cells induced the AP-2alpha signaling pathway. Finally, forced expression of GPx-1 eliminated UVA-induced ceramide accumulation as well as AP-2alpha expression. Taken together, these findings suggest that GPx-1 inhibits UVA-induced AP-2alpha expression by suppressing the accumulation of...
    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing... more
    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translationa...
    The role of oxidative metabolism in the up-regulation/activation of stress-inducible signaling pathways as well as induction of micronucleus formation in bystander cells was investigated. By immunoblotting and in situ immunofluorescence,... more
    The role of oxidative metabolism in the up-regulation/activation of stress-inducible signaling pathways as well as induction of micronucleus formation in bystander cells was investigated. By immunoblotting and in situ immunofluorescence, active Cu-Zn superoxide dismutase (SOD) en- zyme and active catalase enzyme were shown to inhibit the up-regulation of p21Waf1 as well as the induction of micronucleus formation in bystander cells
    Chronic pancreatitis, K-ras oncogene mutations, and the subsequent generation of reactive oxygen species (ROS) appear to be linked to pancreatic cancer. ROS have also been suggested to be mitogenic and capable of stimulating cell... more
    Chronic pancreatitis, K-ras oncogene mutations, and the subsequent generation of reactive oxygen species (ROS) appear to be linked to pancreatic cancer. ROS have also been suggested to be mitogenic and capable of stimulating cell proliferation. Cells contain antioxidant enzymes to regulate steady state levels of ROS produced by products of metabolism. The aims of our study were to determine antioxidant enzyme activity in pancreatic cancer cells and correlate enzyme activity with tumor growth, as well as determine whether tumor cell growth could be altered with antioxidant gene transfection. Western blots, enzyme activity, and enzyme activity gels were performed for manganese superoxide dismutase (MnSOD), copper/zinc, catalase, and glutathione peroxidase in normal human pancreas and in the human pancreatic cancer cell lines BxPC-3, Capan-1, MIA PaCa-2, and AsPC-1. Cell population doubling times were determined and correlated with antioxidant enzyme activity. MnSOD was overexpressed i...
    Increased levels of reactive oxygen species (ROS) such as superoxide anions and hydrogen peroxide have been reported in many cancer cells and they have been implicated in carcinogenesis and tumor progression. Antioxidant enzymes, such as... more
    Increased levels of reactive oxygen species (ROS) such as superoxide anions and hydrogen peroxide have been reported in many cancer cells and they have been implicated in carcinogenesis and tumor progression. Antioxidant enzymes, such as Manganese Superoxide Dismutase (MnSOD or SOD2) and Glutathione Peroxidase-1 (GPx1), act coordinately to neutralize ROS. These enzymes are also thought to contribute to cancer cell resistance to conventional radio-chemo-therapies. Although some relationships have been reported between psychosocial factors and the regulation of antioxidant enzymes, little is known about these relationships in the context of cancer progression. The current study investigated the levels of MnSOD and GPx1in confirmed serous, high-grade tumor tissue from 60 ovarian cancer patients, and explored the relationship between the activity of these enzymes, the levels of tumor norepinephrine (NE), and patient mood as determined via pre-operative questionnaires. MnSOD activity was...
    The toxicity of pharmacological ascorbate is mediated by the generation of H2O2 via the oxidation of ascorbate. Since pancreatic cancer cells are sensitive to H2O2 generated by ascorbate they would also be expected to become sensitized to... more
    The toxicity of pharmacological ascorbate is mediated by the generation of H2O2 via the oxidation of ascorbate. Since pancreatic cancer cells are sensitive to H2O2 generated by ascorbate they would also be expected to become sensitized to agents that increase oxidative damage such as ionizing radiation. The current study demonstrates that pharmacological ascorbate enhances the cytotoxic effects of ionizing radiation as seen by decreased cell viability and clonogenic survival in all pancreatic cancer cell lines examined, but not in non-tumorigenic pancreatic ductal epithelial cells. Ascorbate radiosensitization was associated with an increase in oxidative stress-induced DNA damage, which was reversed by catalase. In mice with established heterotopic and orthotopic pancreatic tumor xenografts, pharmacological ascorbate combined with ionizing radiation decreased tumor growth and increased survival, without damaging the gastrointestinal tract or increasing systemic changes in parameters...
    A gas chromatographic-mass spectrometric method for the determination of the lipid aldehyde 4-hydroxy-2-nonenal (4HNE) in trace quantities is described. The method utilizes the reaction of aldehydes with hydroxylamine leading to the... more
    A gas chromatographic-mass spectrometric method for the determination of the lipid aldehyde 4-hydroxy-2-nonenal (4HNE) in trace quantities is described. The method utilizes the reaction of aldehydes with hydroxylamine leading to the formation of the oxime derivative. The aldehydes are recovered by octadecylsilyl solid-phase extraction and converted to the bis-tert.-butyldimethylsilyl derivatives for analysis using electron ionization. A novel 4HNE analogue, 3-hydroxynonanal, has been synthesized and is used as an internal standard. A limit of detection of approximately 1 pmol of 4 HNE in preparations of approximately 2.10(6) cells or 0.5 ml of whole blood, plasma or serum was observed. Standard addition analysis indicates that the method is accurate at these levels. Replicate analysis of the National Institutes of Standards and Technology Standard Reference Material SRM 909 indicates an average in-run precision of 8.1% and a between-run precision of 13.5% at an average concentration...
    The DNA damage response (DDR) cascade and ROS (reactive oxygen species) signaling are both involved in the induction of cell death after DNA damage, but a mechanistic link between these two pathways has not been clearly elucidated. This... more
    The DNA damage response (DDR) cascade and ROS (reactive oxygen species) signaling are both involved in the induction of cell death after DNA damage, but a mechanistic link between these two pathways has not been clearly elucidated. This study demonstrates that ROS induction after treatment of cells with neocarzinostatin (NCS), an ionizing radiation mimetic, is at least partly mediated by increasing histone H2AX. Increased levels of ROS and cell death induced by H2AX overexpression alone or DNA damage leading to H2AX accumulation are reduced by treating cells with the antioxidant N-Acetyl-L-Cysteine (NAC), the NADP(H) oxidase (Nox) inhibitor DPI, expression of Rac1N17, and knockdown of Nox1, but not Nox4, indicating that induction of ROS by H2AX is mediated through Nox1 and Rac1 GTPase. H2AX increases Nox1 activity partly by reducing the interaction between a Nox1 activator NOXA1 and its inhibitor 14-3-3zeta. These results point to a novel role of histone H2AX that regulates Nox1-med...
    One fundamental observation in cancer etiology is that the rate of malignancies in any mammalian population increases exponentially as a function of age, suggesting a mechanistic link between the cellular processes governing longevity and... more
    One fundamental observation in cancer etiology is that the rate of malignancies in any mammalian population increases exponentially as a function of age, suggesting a mechanistic link between the cellular processes governing longevity and carcinogenesis. In addition, it is well established that aberrations in mitochondrial metabolism, as measured by increased reactive oxygen species (ROS), are observed in both aging and cancer. In this regard, genes that impact upon longevity have recently been characterized in S. cerevisiae and C. elegans, and the human homologs include the Sirtuin family of protein deacetylases. Interestingly, three of the seven sirtuin proteins are localized into the mitochondria suggesting a connection between the mitochondrial sirtuins, the free radical theory of aging, and carcinogenesis. Based on these results it has been hypothesized that Sirt3 functions as a mitochondrial fidelity protein whose function governs both aging and carcinogenesis by modulating RO...
    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing... more
    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translationa...
    The hypothesis that intracellular oxidation/reduction (redox) reactions regulate the G(0)-G(1) to S-phase transition in the mouse embryonic fibroblast cell cycle was investigated. Intracellular redox state was modulated with a... more
    The hypothesis that intracellular oxidation/reduction (redox) reactions regulate the G(0)-G(1) to S-phase transition in the mouse embryonic fibroblast cell cycle was investigated. Intracellular redox state was modulated with a thiol-antioxidant, N-acetyl-L-cysteine (NAC), and cell cycle progression was measured using BrdUrd pulse-chase and flow cytometric analysis. Treatment with NAC for 12 h resulted in an approximately 6-fold increase in intracellular low-molecular-weight thiols and a decrease in the MFI of an oxidation-sensitive probe, dihydrofluorescein diacetate, indicating a shift in the intracellular redox state toward a more reducing environment. NAC-induced alterations in redox state caused selective delays in progression from G(0)-G(1) to S phase in serum-starved cells that were serum stimulated to reenter the cell cycle as well as to inhibit progression from G(1) to S phase in asynchronous cultures with no significant alterations in S phase, and G(2)+M transits. NAC treat...
    Chronic pancreatitis, K-ras oncogene mutations, and the subsequent generation of reactive oxygen species (ROS) appear to be linked to pancreatic cancer. ROS have also been suggested to be mitogenic and capable of stimulating cell... more
    Chronic pancreatitis, K-ras oncogene mutations, and the subsequent generation of reactive oxygen species (ROS) appear to be linked to pancreatic cancer. ROS have also been suggested to be mitogenic and capable of stimulating cell proliferation. Cells contain antioxidant enzymes to regulate steady state levels of ROS produced by products of metabolism. The aims of our study were to determine antioxidant enzyme activity in pancreatic cancer cells and correlate enzyme activity with tumor growth, as well as determine whether tumor cell growth could be altered with antioxidant gene transfection. Western blots, enzyme activity, and enzyme activity gels were performed for manganese superoxide dismutase (MnSOD), copper/zinc, catalase, and glutathione peroxidase in normal human pancreas and in the human pancreatic cancer cell lines BxPC-3, Capan-1, MIA PaCa-2, and AsPC-1. Cell population doubling times were determined and correlated with antioxidant enzyme activity. MnSOD was overexpressed i...

    And 88 more