Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Fumonisin B1 (FB1) contributes to mycotoxicosis in animals and has been associated with the incidence of some cancers in humans. The effect of FB1 on lipidomic profiles, sphingolipids and cholesterol levels have been demonstrated in... more
Fumonisin B1 (FB1) contributes to mycotoxicosis in animals and has been associated with the incidence of some cancers in humans. The effect of FB1 on lipidomic profiles, sphingolipids and cholesterol levels have been demonstrated in experimental models, however, the events leading to altered cholesterol levels are unclear. This study investigates the molecular mechanisms that regulate the effect of FB1 on cholesterol homeostasis in galactose supplemented HepG2 liver cells. Galactose supplementation is a proven method utilised to circumvent the Crabtree effect exhibited by cancer cells, which forces cancer cells to activate the mitochondria. HepG2 cells were cultured in galactose supplemented media and treated with FB1 (IC50 = 25 μM) for 6 h. Cell viability was determined using the MTT assay. Metabolic status was evaluated using ATP luciferase assay, and cholesterol regulatory transcription factors (SIRT1, SREBP-1C, LXR, LDLR, PCSK9, and ABCA1) were investigated using western blotting and qPCR. FB1 in galactose supplemented HepG2 cells increased gene expression of SIRT1 (P<0.05), SREBP-1C, LXR, and LDLR; however, PCSK9 (P<0.05) was decreased. Furthermore, protein expression of SIRT1, LXR, and LDLR was elevated upon FB1 treatment, while SREBP-1C and PCSK9 were reduced. The data provides evidence that SIRT1 reduced the expression of PCSK9 and deacetylated LXR to prevent degradation of LDLR. This could result in a dysregulated cholesterol flux, which may contribute to FB1 mediated toxicity.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a global pandemic, with an alarming infectivity and mortality rate. Studies have examined genetic effects on SARS-CoV-2 disease susceptibility and... more
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a global pandemic, with an alarming infectivity and mortality rate. Studies have examined genetic effects on SARS-CoV-2 disease susceptibility and severity within Eurasian populations. These studies identified contrasting effects on the severity of disease between African populations. Genetic factors can explain some of the diversity observed within SARS-CoV-2 disease susceptibility and severity. Single nucleotide polymorphisms (SNPs) within the SARS-CoV-2 receptor genes have demonstrated detrimental and protective effects across ethnic groups. For example, the TT genotype of rs2285666 (Angiotensin-converting enzyme 2 (ACE2)) is associated with the severity of SARS-CoV-2 disease, which is found at higher frequency within Asian individuals compared to African and European individuals. In this study, we examined four SARS-CoV-2 receptors, ACE2, Transmembrane serine protease 2 (TMPRSS2), Neuropilin-...
With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million new global infections per year, it is imperative that we advance our understanding of all factors contributing to HIV infection. While most... more
With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million new global infections per year, it is imperative that we advance our understanding of all factors contributing to HIV infection. While most studies have focused on the influence of host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention. Epigenetics involves alterations in gene expression without altering the DNA sequence. DNA methylation is a critical epigenetic mechanism that influences both viral and host factors. This review has five focal points, which examines (i) fluctuations in the expression of methylation modifying factors upon HIV infection (ii) the effect of DNA methylation on HIV viral genes and (iii) host genome (iv) inferences from other infectious and non-communicable diseases, we provide a list of HIV-associated host genes that are regulated by methylation in other disease models (v) the potential of DNA methylation as an epi-therapeutic strategy ...
Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic changes in cancer arise from alterations in DNA and histone modifications that lead to tumour suppressor gene silencing and the activation of... more
Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic changes in cancer arise from alterations in DNA and histone modifications that lead to tumour suppressor gene silencing and the activation of oncogenes. The acetylation status of histones and non-histone proteins are determined by the histone deacetylases and histone acetyltransferases that control gene transcription. Organoselenium compounds have become promising contenders in cancer therapeutics. Apart from their anti-oxidative effects, several natural and synthetic organoselenium compounds and metabolites act as histone deacetylase inhibitors, which influence the acetylation status of histones and non-histone proteins, altering gene transcription. This review aims to summarise the effect of natural and synthetic organoselenium compounds on histone and non-histone protein acetylation/deacetylation in cancer therapy.