Psychedelics have emerged as promising candidate treatments for various psychiatric conditions, a... more Psychedelics have emerged as promising candidate treatments for various psychiatric conditions, and given their clinical potential, there is a need to identify biomarkers that underlie their effects. Here, we investigate the neural mechanisms of lysergic acid diethylamide (LSD) using regression dynamic causal modelling (rDCM), a novel technique that assesses whole-brain effective connectivity (EC) during resting-state functional magnetic resonance imaging (fMRI). We modelled data from two randomized, placebo-controlled, double-blind, cross-over trials, in which 45 participants were administered 100μg LSD and placebo in two resting-state fMRI sessions. We compared EC against whole-brain functional connectivity (FC) using classical statistics and machine learning methods. Multivariate analyses of EC parameters revealed widespread increases in interregional connectivity and reduced self-inhibition under LSD compared to placebo, with the notable exception of primarily decreased interreg...
<p>Soil erosion in Alpine grassland areas is an ecological threat caused by... more <p>Soil erosion in Alpine grassland areas is an ecological threat caused by the extreme topography, prevailing climate conditions and land-use practices but enhanced by climate change (e.g., heavy precipitation events, changing snow dynamics) in combination with changing land-use practices (e.g, more intensely used pastures). To increase our understanding of ongoing soil erosion processes in Alpine grasslands, there is a need to acquire detailed information on spatial extension and temporal trends.</p><p>In the past, we have successfully applied a semi-automatic method using an object-based image analysis (OBIA) framework with high-resolution aerial images (0.25-0.5m) and a digital terrain model (2m) to map erosion features in the Central Swiss Alps (Urseren Valley, Canton Uri, Switzerland). Degraded sites are classified according to the major erosion process (shallow landslides; sites with reduced vegetation cover affected by sheet erosion) or triggering factors (trampling by livestock; management effects) (Zweifel et al. 2019). We now aim to apply a deep learning (DL) model with the purpose of fast and efficient spatial upscaling(e.g., alpine-wide analysis). While OBIA yields high quality results, there are multiple constraints, such as labor-intensive steps and the requirement of expert knowledge, which make the method unsuitable for larger scale applications. The results of OBIA are used as a training dataset for our DL model. The DL approach uses fully-convolutional networks with the U-Net architecture and is capable of rapid segmentation and classification to identify areas with reduced vegetation cover and bare soil sites.</p><p>Results for the Urseren Valley (Canton Uri, Switzerland) show an increase in total area affected by soil degradation of 156 ±18% during a 16-year observation period (2000-2016). A comparison of the two methods (OBIA and DL) shows that DL results for the Urseren Valley follow similar trends for the 16-year period and that the segmentations of eroded sites are in good agreement (IoU = 0.83). First transferability tests to other valleys not considered during training of the DL model are very promising, confirming that DL is a well-suited and efficient method for future projects to map and assess soil erosion processes in grassland areas at regional scales.</p><p> </p><p><strong>References</strong></p><p>L. Zweifel, K. Meusburger, and C. Alewell. Spatio-temporal pattern of soil degradation in a Swiss Alpine grassland catchment. Remote Sensing of Environment, 235, 2019.</p>
Paranoid delusions or unfounded beliefs that others intend to deliberately cause harm are a frequ... more Paranoid delusions or unfounded beliefs that others intend to deliberately cause harm are a frequent and burdensome symptom in early psychosis, but their emergence and consolidation still remains opaque. Recent theories suggest that aberrant prediction errors lead to a brittle model of the world providing a breeding ground for delusions. Here, we employ a Bayesian approach to test for a more unstable model of the world and investigate the computational mechanisms underlying emerging paranoia.We modelled behaviour of 18 first-episode psychosis patients (FEP), 19 individuals at clinical high-risk for psychosis (CHR-P), and 19 healthy controls (HC) during an advice-taking task, designed to probe learning about others’ changing intentions. We formulated competing hypotheses comparing the standard Hierarchical Gaussian Filter (HGF), a Bayesian belief updating scheme, with a mean-reverting HGF to model an altered perception of volatility.There was a significant group-by-volatility interac...
Psychedelics have emerged as promising candidate treatments for various psychiatric conditions, a... more Psychedelics have emerged as promising candidate treatments for various psychiatric conditions, and given their clinical potential, there is a need to identify biomarkers that underlie their effects. Here, we investigate the neural mechanisms of lysergic acid diethylamide (LSD) using regression dynamic causal modelling (rDCM), a novel technique that assesses whole-brain effective connectivity (EC) during resting-state functional magnetic resonance imaging (fMRI). We modelled data from two randomized, placebo-controlled, double-blind, cross-over trials, in which 45 participants were administered 100μg LSD and placebo in two resting-state fMRI sessions. We compared EC against whole-brain functional connectivity (FC) using classical statistics and machine learning methods. Multivariate analyses of EC parameters revealed widespread increases in interregional connectivity and reduced self-inhibition under LSD compared to placebo, with the notable exception of primarily decreased interreg...
<p>Soil erosion in Alpine grassland areas is an ecological threat caused by... more <p>Soil erosion in Alpine grassland areas is an ecological threat caused by the extreme topography, prevailing climate conditions and land-use practices but enhanced by climate change (e.g., heavy precipitation events, changing snow dynamics) in combination with changing land-use practices (e.g, more intensely used pastures). To increase our understanding of ongoing soil erosion processes in Alpine grasslands, there is a need to acquire detailed information on spatial extension and temporal trends.</p><p>In the past, we have successfully applied a semi-automatic method using an object-based image analysis (OBIA) framework with high-resolution aerial images (0.25-0.5m) and a digital terrain model (2m) to map erosion features in the Central Swiss Alps (Urseren Valley, Canton Uri, Switzerland). Degraded sites are classified according to the major erosion process (shallow landslides; sites with reduced vegetation cover affected by sheet erosion) or triggering factors (trampling by livestock; management effects) (Zweifel et al. 2019). We now aim to apply a deep learning (DL) model with the purpose of fast and efficient spatial upscaling(e.g., alpine-wide analysis). While OBIA yields high quality results, there are multiple constraints, such as labor-intensive steps and the requirement of expert knowledge, which make the method unsuitable for larger scale applications. The results of OBIA are used as a training dataset for our DL model. The DL approach uses fully-convolutional networks with the U-Net architecture and is capable of rapid segmentation and classification to identify areas with reduced vegetation cover and bare soil sites.</p><p>Results for the Urseren Valley (Canton Uri, Switzerland) show an increase in total area affected by soil degradation of 156 ±18% during a 16-year observation period (2000-2016). A comparison of the two methods (OBIA and DL) shows that DL results for the Urseren Valley follow similar trends for the 16-year period and that the segmentations of eroded sites are in good agreement (IoU = 0.83). First transferability tests to other valleys not considered during training of the DL model are very promising, confirming that DL is a well-suited and efficient method for future projects to map and assess soil erosion processes in grassland areas at regional scales.</p><p> </p><p><strong>References</strong></p><p>L. Zweifel, K. Meusburger, and C. Alewell. Spatio-temporal pattern of soil degradation in a Swiss Alpine grassland catchment. Remote Sensing of Environment, 235, 2019.</p>
Paranoid delusions or unfounded beliefs that others intend to deliberately cause harm are a frequ... more Paranoid delusions or unfounded beliefs that others intend to deliberately cause harm are a frequent and burdensome symptom in early psychosis, but their emergence and consolidation still remains opaque. Recent theories suggest that aberrant prediction errors lead to a brittle model of the world providing a breeding ground for delusions. Here, we employ a Bayesian approach to test for a more unstable model of the world and investigate the computational mechanisms underlying emerging paranoia.We modelled behaviour of 18 first-episode psychosis patients (FEP), 19 individuals at clinical high-risk for psychosis (CHR-P), and 19 healthy controls (HC) during an advice-taking task, designed to probe learning about others’ changing intentions. We formulated competing hypotheses comparing the standard Hierarchical Gaussian Filter (HGF), a Bayesian belief updating scheme, with a mean-reverting HGF to model an altered perception of volatility.There was a significant group-by-volatility interac...
Uploads
Papers by Volker Roth