Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
ABSTRACT Mechanical behaviour of old masonry may differ from the theoretical one to a great extent, hence it needs to be properly evaluated for quantifying the safety and serviceability of real structures, in view of their rehabilitation... more
ABSTRACT Mechanical behaviour of old masonry may differ from the theoretical one to a great extent, hence it needs to be properly evaluated for quantifying the safety and serviceability of real structures, in view of their rehabilitation and/or seismic reliability assessment. Among the factors affecting such behaviour, the presence of moisture, mainly from rising damp, plays a key role in the deterioration state of old masonry structures, owing to salt crystallisation, frost damage, etc. Besides, water presence in the material pores may also directly influence their mechanical properties (compressive and tensile strength, elastic modulus), due to the interactions with the pore surface, enhancement of crack propagation velocity and other mechanisms. Although the effect of water saturation has been investigated for clay-bearing rocks, ceramics and concrete, its consequences on the mechanical behaviour of brick masonry still requires in-depth elucidation. For this reason, in the present paper the compressive strength and Young’s modulus of fired-clay bricks, cement-based and lime-based mortars as well as masonry triplets are investigated, in dry and wet conditions. The results are interpreted in the light of the microstructural features of the materials, i.e., total voids amount and pores size distribution.
ABSTRACT Given the high energy consumption connected to old buildings and their large environmental impact, there is a strong need for effective solutions for the building envelope retrofitting. Among these solutions, external thermal... more
ABSTRACT Given the high energy consumption connected to old buildings and their large environmental impact, there is a strong need for effective solutions for the building envelope retrofitting. Among these solutions, external thermal insulation composite systems (ETICS) have found large application in recent decades. In this paper a new kind of large-size thermal insulation composite boards, prefabricated using porcelain stoneware slab finishing, was developed. Different thermal insulating materials and adhesives, with and without glass fibre mesh, were tested by both current methodologies and purposely designed tests, in order to assess their physical-mechanical properties and durability performance, finally selecting the most suitable materials for the composite board. The strong points of this composite board are mainly: (i) its short placing time and improved execution quality, due to prefabrication; (ii) its high aesthetical value; (iii) its high durability, as the finishing layer is mostly insensible to weathering. The results highlight the good performances of the prefabricated composite board developed in this study (generally higher than current ETICS). The testing procedure followed in this study is also meant to give a contribution to the establishment of methodologies for the selection and durability assessment of materials for the building envelope retrofitting.
ABSTRACT Ethyl silicate (TEOS) is nowadays the most widely used consolidant for stone, due to its efficacy on silicate stones and also on limestones containing small amounts of quartz. However, because of the very long time required for... more
ABSTRACT Ethyl silicate (TEOS) is nowadays the most widely used consolidant for stone, due to its efficacy on silicate stones and also on limestones containing small amounts of quartz. However, because of the very long time required for TEOS curing reactions to be completed, the final mechanical improvement caused by the treatment is reached only after several months and, during this period, the treated stone is temporarily hydrophobic. This latter aspect is one of the most relevant drawbacks of TEOS, as it makes it impossible to perform water-based interventions after consolidation. Therefore, in this study the possible acceleration of TEOS curing reactions by prolonged contact with water, some time after consolidant application, was investigated. A commercial TEOS-based product was applied on Globigerina limestone, a porous stone from Malta containing also small amounts of quartz. After that preliminary tests indicated that prolonged contact with water is actually effective in both removing hydrophobicity and improving mechanical strength, a new consolidation cycle, based on TEOS application followed by application of a water-impregnated poultice was tested. The results of the study indicate that water application by poultice, after curing for 7 days, allows to remove the hydrophobicity and achieve higher mechanical properties than those obtained after curing for 4 weeks in laboratory conditions. Moreover, such mechanical properties are around 90 % of those achieved after curing for as much as 7 months, which points out that the proposed method is a very promising technique for accelerating TEOS curing reactions.