Il manuale tecnico del progetto di tesi "Aquileia. La Basilica".
Una porposta di studio che inter... more Il manuale tecnico del progetto di tesi "Aquileia. La Basilica". Una porposta di studio che intergri in un unico supporto il testo scritto, le immagini del patrimonio culturale ed il materiale informatico, immagini ad alta risoluzione, diagnostica e modelli tridimensionali. ISIA Urbino 2017-2018
The paper presents a group of four, approximately 0.5m large, stone disks from entrances or cemet... more The paper presents a group of four, approximately 0.5m large, stone disks from entrances or cemeteries of two protohistoric hillforts of north-eastern Adriatic. The disks, having a sparse chronology with the exception of one dated to the Middle Bronze Age, show flat and plain surfaces or covered with sub-circular depressions. One disk shows two larger cup-marks at the centre of both faces. They are interpreted as ritual artefacts based on the association with sacred settlement locations and comparisons with similar coeval stones found mainly close to citadel entrances, burials and thresholds in the Aegean area and Anatolia.
<p>Storms and storm surges could increase their impact on rocky coasts in the next ... more <p>Storms and storm surges could increase their impact on rocky coasts in the next years due to global warming. In recent years, the study of boulders moved by storm waves seems to have played an important role. A key indicator that can follow extreme storm events on rocky shores includes coastal boulders detached from the bedrock. These deposits became in focus of a several studies since play a significant role in coastal hazard assessment. First studies regarded deposits of boulder related to tsunami events, but recently many sites with large clasts related to storm waves have been discovered, also in semi-enclosed shallow basin, such as the Adriatic Sea, in the Mediterranean area.</p><p>In this study we widened the mapping of boulders recently studied at Premantura promontory (southern Istria, Croatia) in order to better assess the role of coastal morphology in boulder sedimentation. In particular, we present and discuss the role of boulder deposits in several islets close to the promontory, also considering that at the island of Sekovac boulders are definitively of artificial origin and later moved by extreme waves.</p><p>The investigation of the position, size, and mass of each boulder was created through the application of Uncrewed Aerial Vehicle Digital Photogrammetry (UAV-DP) and Structure from Motion (SfM) technique, defining the GCPS points, and providing high-resolution data.  </p><p>Boulders were identified and categorized using UAV-DP products, and their validation was done through the comparison with outputs of traditional geomorphological investigations such as field surveys including direct axis measurement and the use of Google Earth images for boulder mapping.</p>
The photogrammetric method is widely used in coastal areas and in submerged environments. Time-la... more The photogrammetric method is widely used in coastal areas and in submerged environments. Time-lapse images collected with unmanned aerial vehicles are used to reproduce the emerged areas, while images taken by divers are used to reproduce submerged ones. Conversely, 3D models of natural or human-made objects lying at the water level are severely affected by the difference in refractive index between air and seawater. For this reason, the matching of 3D models of emergent and submerged coasts has been very rarely tested and never used in Earth Sciences. The availability of a large number of time-lapse images, collected at the intertidal zone during previous snorkel surveys, encouraged us to test the merging of 3D models of emerged and submerged environments. Considering the rapid and effective nature of the aforementioned program of swim surveys, photogrammetric targets were not used during image acquisition. This forced us to test the matching of the independent models by recognizi...
Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts... more Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts is a complex geomorphological process that requires a deep understanding of submarine and onshore environments. This process is especially interesting in semi-enclosed shallow basins characterized by extreme storms, but without a significant tsunami record. Moreover, the response of boulder deposits located close to the coast to severe storms remains, in terms of accurate displacement measurement, limited due to the need to acquire long-term data such as ongoing monitoring datasets and repeated field surveys. We present a multidisciplinary study that includes inland and submarine surveys carried out to monitor and accurately quantify the recent displacement of coastal boulders accumulated on the southernmost coast of the Premantura (Kamenjak) Promontory (Croatia, northern Adriatic Sea). We identified recent boulder movements using unmanned aerial vehicle digital photogrammetry (UAV-DP)....
La tesi indaga le possibilità di utilizzare suporti cartacei ed informatici per accompagare lo st... more La tesi indaga le possibilità di utilizzare suporti cartacei ed informatici per accompagare lo studio di testi storico-artiscici, <br> garantendo allo studioso il materiale per complete ed approfondite analisi del patrimonio culturale. Il secondo volume tratta unicamente la ricerca tecnica per le riprese. Nella versione online, disponendo dei diritti d'uso unicamente a fini di tesi, il testo è stato oscurato, si rimanda pertanto alla pubblicazione di provenienza, Antichità Altoadriatiche, vol. LXIX, "La basilica di Aquileia, Storia, archeologia ed arte", Editreg, 2010.
The aim of this study is to demonstrate the advantages of using micro drones in the study of larg... more The aim of this study is to demonstrate the advantages of using micro drones in the study of large slow-moving landslides, which are widespread along the northwestern coast of Malta. In particular, attention was given to the inventory and analysis of gravity-induced joints and megaclast deposits at four study sites selected due to the presence of remarkable examples of lateral spreads evolving into block slides. The research was carried out by means of Google Earth (GE) image analysis and uncrewed aerial vehicle digital photogrammetry (UAV-DP). UAV-DP outputs enabled the identification and characterization of tens of persistent joints (locally exceeding 150 m) and permitted the size categorization of thousands of blocks. With reference to gravity-induced joints, a favorable agreement was found between existing datasets (mainly based on the integration of GE analysis and field survey) and UAV-DP outputs in terms of the identification of joints and their persistence. Conversely, the u...
The photogrammetric method is widely used in coastal areas and in submerged environments. Time-la... more The photogrammetric method is widely used in coastal areas and in submerged environments. Time-lapse images collected with unmanned aerial vehicles are used to reproduce the emerged areas, while images taken by divers are used to reproduce submerged ones. Conversely, 3D models of natural or human-made objects lying at the water level are severely affected by the difference in refractive index between air and seawater. For this reason, the matching of 3D models of emergent and submerged coasts has been very rarely tested and never used in Earth Sciences. The availability of a large number of time-lapse images, collected at the intertidal zone during previous snorkel surveys, encouraged us to test the merging of 3D models of emerged and submerged environments. Considering the rapid and effective nature of the aforementioned program of swim surveys, photogrammetric targets were not used during image acquisition. This forced us to test the matching of the independent models by recognizing prominent landforms along the waterline. Here we present the approach used to test the method, the instrumentation used for the field tests, and the setting of cameras fixed to a specially built aluminum support console and discuss both its advantages and its limits compared to UAVs. 3D models of sea cliffs were generated by applying structure-from-motion (SfM) photogrammetry. Horizontal time-lapse images, collected with action cameras while swimming parallel to the coastline at nearly constant velocity, were used for the tests. Subsequently, prominent coastal landforms were used to couple the independent models obtained from the emergent and submerged cliffs. The method was pilot tested in two coastal sites in the northeastern Adriatic (part of the Mediterranean basin). The first site was a 25 m sea wall of sandstone set within a small harbor, while the second site was a 150 m route below plunging limestone cliffs. The data show that inexpensive action cameras provide a sufficient resolution to support and integrate geomorphological field surveys along rocky coastlines.
Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts... more Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts is a complex geomorphological process that requires a deep understanding of submarine and onshore environments. This process is especially interesting in semi-enclosed shallow basins characterized by extreme storms, but without a significant tsunami record. Moreover, the response of boulder deposits located close to the coast to severe storms remains, in terms of accurate displacement measurement, limited due to the need to acquire long-term data such as ongoing monitoring datasets and repeated field surveys. We present a multidisciplinary study that includes inland and submarine surveys carried out to monitor and accurately quantify the recent displacement of coastal boulders accumulated on the southernmost coast of the Premantura (Kamenjak) Promontory (Croatia, northern Adriatic Sea). We identified recent boulder movements using unmanned aerial vehicle digital photogrammetry (UAV-DP). Fourteen boulders were moved by the waves generated by a severe storm, named Vaia, which occurred on 29 October 2018. This storm struck Northeast Italy and the Istrian coasts with its full force. We have reproduced the storm-generated waves using unstructured wave model Simulating WAves Nearshore (SWAN), with a significant wave height of 6.2 m in front of the boulder deposit area. These simulated waves are considered to have a return period of 20 to 30 years. In addition to the aerial survey, an underwater photogrammetric survey was carried out in order to create a three-dimensional (3D) model of the seabed and identify the submarine landforms associated with boulder detachment. The survey highlighted that most of the holes can be considered potholes, while only one detachment shape was identified. The latter is not related to storm Vaia, but to a previous storm. Two boulders are lying on the seabed and the underwater surveys highlighted that these boulders may be beached during future storms. Thus, this is an interesting example of active erosion of the rocky coast in a geologically, geomorphologically, and oceanologically predisposed locality.
Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts... more Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts is a complex geomorphological process that requires a deep understanding of submarine and onshore environments. This process is especially interesting in semi-enclosed shallow basins characterized by extreme storms, but without a significant tsunami record. Moreover, the response of boulder deposits located close to the coast to severe storms remains, in terms of accurate displacement measurement, limited due to the need to acquire long-term data such as ongoing monitoring datasets and repeated field surveys. We present a multidisciplinary study that includes inland and submarine surveys carried out to monitor and accurately quantify the recent displacement of coastal boulders accumulated on the southernmost coast of the Premantura (Kamenjak) Promontory (Croatia, northern Adriatic Sea). We identified recent boulder movements using unmanned aerial vehicle digital photogrammetry (UAV-DP). Fourteen boulders were moved by the waves generated by a severe storm, named Vaia, which occurred on 29 October 2018. This storm struck Northeast Italy and the Istrian coasts with its full force. We have reproduced the storm-generated waves using unstructured wave model Simulating WAves Nearshore (SWAN), with a significant wave height of 6.2 m in front of the boulder deposit area. These simulated waves are considered to have a return period of 20 to 30 years. In addition to the aerial survey, an underwater photogrammetric survey was carried out in order to create a three-dimensional (3D) model of the seabed and identify the submarine landforms associated with boulder detachment. The survey highlighted that most of the holes can be considered potholes, while only one detachment shape was identified. The latter is not related to storm Vaia, but to a previous storm. Two boulders are lying on the seabed and the underwater surveys highlighted that these boulders may be beached during future storms. Thus, this is an interesting example of active erosion of the rocky coast in a geologically, geomorphologically, and oceanologically predisposed locality.
Il manuale tecnico del progetto di tesi "Aquileia. La Basilica".
Una porposta di studio che inter... more Il manuale tecnico del progetto di tesi "Aquileia. La Basilica". Una porposta di studio che intergri in un unico supporto il testo scritto, le immagini del patrimonio culturale ed il materiale informatico, immagini ad alta risoluzione, diagnostica e modelli tridimensionali. ISIA Urbino 2017-2018
The paper presents a group of four, approximately 0.5m large, stone disks from entrances or cemet... more The paper presents a group of four, approximately 0.5m large, stone disks from entrances or cemeteries of two protohistoric hillforts of north-eastern Adriatic. The disks, having a sparse chronology with the exception of one dated to the Middle Bronze Age, show flat and plain surfaces or covered with sub-circular depressions. One disk shows two larger cup-marks at the centre of both faces. They are interpreted as ritual artefacts based on the association with sacred settlement locations and comparisons with similar coeval stones found mainly close to citadel entrances, burials and thresholds in the Aegean area and Anatolia.
&lt;p&gt;Storms and storm surges could increase their impact on rocky coasts in the next ... more &lt;p&gt;Storms and storm surges could increase their impact on rocky coasts in the next years due to global warming. In recent years, the study of boulders moved by storm waves seems to have played an important role. A key indicator that can follow extreme storm events on rocky shores includes coastal boulders detached from the bedrock. These deposits became in focus of a several studies since play a significant role in coastal hazard assessment. First studies regarded deposits of boulder related to tsunami events, but recently many sites with large clasts related to storm waves have been discovered, also in semi-enclosed shallow basin, such as the Adriatic Sea, in the Mediterranean area.&lt;/p&gt;&lt;p&gt;In this study we widened the mapping of boulders recently studied at Premantura promontory (southern Istria, Croatia) in order to better assess the role of coastal morphology in boulder sedimentation. In particular, we present and discuss the role of boulder deposits in several islets close to the promontory, also considering that at the island of Sekovac boulders are definitively of artificial origin and later moved by extreme waves.&lt;/p&gt;&lt;p&gt;The investigation of the position, size, and mass of each boulder was created through the application of Uncrewed Aerial Vehicle Digital Photogrammetry (UAV-DP) and Structure from Motion (SfM) technique, defining the GCPS points, and providing high-resolution data. &amp;#160;&lt;/p&gt;&lt;p&gt;Boulders were identified and categorized using UAV-DP products, and their validation was done through the comparison with outputs of traditional geomorphological investigations such as field surveys including direct axis measurement and the use of Google Earth images for boulder mapping.&lt;/p&gt;
The photogrammetric method is widely used in coastal areas and in submerged environments. Time-la... more The photogrammetric method is widely used in coastal areas and in submerged environments. Time-lapse images collected with unmanned aerial vehicles are used to reproduce the emerged areas, while images taken by divers are used to reproduce submerged ones. Conversely, 3D models of natural or human-made objects lying at the water level are severely affected by the difference in refractive index between air and seawater. For this reason, the matching of 3D models of emergent and submerged coasts has been very rarely tested and never used in Earth Sciences. The availability of a large number of time-lapse images, collected at the intertidal zone during previous snorkel surveys, encouraged us to test the merging of 3D models of emerged and submerged environments. Considering the rapid and effective nature of the aforementioned program of swim surveys, photogrammetric targets were not used during image acquisition. This forced us to test the matching of the independent models by recognizi...
Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts... more Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts is a complex geomorphological process that requires a deep understanding of submarine and onshore environments. This process is especially interesting in semi-enclosed shallow basins characterized by extreme storms, but without a significant tsunami record. Moreover, the response of boulder deposits located close to the coast to severe storms remains, in terms of accurate displacement measurement, limited due to the need to acquire long-term data such as ongoing monitoring datasets and repeated field surveys. We present a multidisciplinary study that includes inland and submarine surveys carried out to monitor and accurately quantify the recent displacement of coastal boulders accumulated on the southernmost coast of the Premantura (Kamenjak) Promontory (Croatia, northern Adriatic Sea). We identified recent boulder movements using unmanned aerial vehicle digital photogrammetry (UAV-DP)....
La tesi indaga le possibilità di utilizzare suporti cartacei ed informatici per accompagare lo st... more La tesi indaga le possibilità di utilizzare suporti cartacei ed informatici per accompagare lo studio di testi storico-artiscici, <br> garantendo allo studioso il materiale per complete ed approfondite analisi del patrimonio culturale. Il secondo volume tratta unicamente la ricerca tecnica per le riprese. Nella versione online, disponendo dei diritti d'uso unicamente a fini di tesi, il testo è stato oscurato, si rimanda pertanto alla pubblicazione di provenienza, Antichità Altoadriatiche, vol. LXIX, "La basilica di Aquileia, Storia, archeologia ed arte", Editreg, 2010.
The aim of this study is to demonstrate the advantages of using micro drones in the study of larg... more The aim of this study is to demonstrate the advantages of using micro drones in the study of large slow-moving landslides, which are widespread along the northwestern coast of Malta. In particular, attention was given to the inventory and analysis of gravity-induced joints and megaclast deposits at four study sites selected due to the presence of remarkable examples of lateral spreads evolving into block slides. The research was carried out by means of Google Earth (GE) image analysis and uncrewed aerial vehicle digital photogrammetry (UAV-DP). UAV-DP outputs enabled the identification and characterization of tens of persistent joints (locally exceeding 150 m) and permitted the size categorization of thousands of blocks. With reference to gravity-induced joints, a favorable agreement was found between existing datasets (mainly based on the integration of GE analysis and field survey) and UAV-DP outputs in terms of the identification of joints and their persistence. Conversely, the u...
The photogrammetric method is widely used in coastal areas and in submerged environments. Time-la... more The photogrammetric method is widely used in coastal areas and in submerged environments. Time-lapse images collected with unmanned aerial vehicles are used to reproduce the emerged areas, while images taken by divers are used to reproduce submerged ones. Conversely, 3D models of natural or human-made objects lying at the water level are severely affected by the difference in refractive index between air and seawater. For this reason, the matching of 3D models of emergent and submerged coasts has been very rarely tested and never used in Earth Sciences. The availability of a large number of time-lapse images, collected at the intertidal zone during previous snorkel surveys, encouraged us to test the merging of 3D models of emerged and submerged environments. Considering the rapid and effective nature of the aforementioned program of swim surveys, photogrammetric targets were not used during image acquisition. This forced us to test the matching of the independent models by recognizing prominent landforms along the waterline. Here we present the approach used to test the method, the instrumentation used for the field tests, and the setting of cameras fixed to a specially built aluminum support console and discuss both its advantages and its limits compared to UAVs. 3D models of sea cliffs were generated by applying structure-from-motion (SfM) photogrammetry. Horizontal time-lapse images, collected with action cameras while swimming parallel to the coastline at nearly constant velocity, were used for the tests. Subsequently, prominent coastal landforms were used to couple the independent models obtained from the emergent and submerged cliffs. The method was pilot tested in two coastal sites in the northeastern Adriatic (part of the Mediterranean basin). The first site was a 25 m sea wall of sandstone set within a small harbor, while the second site was a 150 m route below plunging limestone cliffs. The data show that inexpensive action cameras provide a sufficient resolution to support and integrate geomorphological field surveys along rocky coastlines.
Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts... more Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts is a complex geomorphological process that requires a deep understanding of submarine and onshore environments. This process is especially interesting in semi-enclosed shallow basins characterized by extreme storms, but without a significant tsunami record. Moreover, the response of boulder deposits located close to the coast to severe storms remains, in terms of accurate displacement measurement, limited due to the need to acquire long-term data such as ongoing monitoring datasets and repeated field surveys. We present a multidisciplinary study that includes inland and submarine surveys carried out to monitor and accurately quantify the recent displacement of coastal boulders accumulated on the southernmost coast of the Premantura (Kamenjak) Promontory (Croatia, northern Adriatic Sea). We identified recent boulder movements using unmanned aerial vehicle digital photogrammetry (UAV-DP). Fourteen boulders were moved by the waves generated by a severe storm, named Vaia, which occurred on 29 October 2018. This storm struck Northeast Italy and the Istrian coasts with its full force. We have reproduced the storm-generated waves using unstructured wave model Simulating WAves Nearshore (SWAN), with a significant wave height of 6.2 m in front of the boulder deposit area. These simulated waves are considered to have a return period of 20 to 30 years. In addition to the aerial survey, an underwater photogrammetric survey was carried out in order to create a three-dimensional (3D) model of the seabed and identify the submarine landforms associated with boulder detachment. The survey highlighted that most of the holes can be considered potholes, while only one detachment shape was identified. The latter is not related to storm Vaia, but to a previous storm. Two boulders are lying on the seabed and the underwater surveys highlighted that these boulders may be beached during future storms. Thus, this is an interesting example of active erosion of the rocky coast in a geologically, geomorphologically, and oceanologically predisposed locality.
Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts... more Boulder detachment from the seafloor and subsequent transport and accumulation along rocky coasts is a complex geomorphological process that requires a deep understanding of submarine and onshore environments. This process is especially interesting in semi-enclosed shallow basins characterized by extreme storms, but without a significant tsunami record. Moreover, the response of boulder deposits located close to the coast to severe storms remains, in terms of accurate displacement measurement, limited due to the need to acquire long-term data such as ongoing monitoring datasets and repeated field surveys. We present a multidisciplinary study that includes inland and submarine surveys carried out to monitor and accurately quantify the recent displacement of coastal boulders accumulated on the southernmost coast of the Premantura (Kamenjak) Promontory (Croatia, northern Adriatic Sea). We identified recent boulder movements using unmanned aerial vehicle digital photogrammetry (UAV-DP). Fourteen boulders were moved by the waves generated by a severe storm, named Vaia, which occurred on 29 October 2018. This storm struck Northeast Italy and the Istrian coasts with its full force. We have reproduced the storm-generated waves using unstructured wave model Simulating WAves Nearshore (SWAN), with a significant wave height of 6.2 m in front of the boulder deposit area. These simulated waves are considered to have a return period of 20 to 30 years. In addition to the aerial survey, an underwater photogrammetric survey was carried out in order to create a three-dimensional (3D) model of the seabed and identify the submarine landforms associated with boulder detachment. The survey highlighted that most of the holes can be considered potholes, while only one detachment shape was identified. The latter is not related to storm Vaia, but to a previous storm. Two boulders are lying on the seabed and the underwater surveys highlighted that these boulders may be beached during future storms. Thus, this is an interesting example of active erosion of the rocky coast in a geologically, geomorphologically, and oceanologically predisposed locality.
Uploads
Books by Vanja Macovaz
Una porposta di studio che intergri in un unico supporto il testo scritto, le immagini del patrimonio culturale ed il materiale informatico, immagini ad alta risoluzione, diagnostica e modelli tridimensionali.
ISIA Urbino 2017-2018
Papers by Vanja Macovaz
list by Vanja Macovaz
Una porposta di studio che intergri in un unico supporto il testo scritto, le immagini del patrimonio culturale ed il materiale informatico, immagini ad alta risoluzione, diagnostica e modelli tridimensionali.
ISIA Urbino 2017-2018