Reconstruction of bony defects is challenging when conventional grafting methods are used because... more Reconstruction of bony defects is challenging when conventional grafting methods are used because of their intrinsic limitations (biological cost and/or biological properties). Bone regeneration techniques are rapidly evolving since the introduction of three-dimensional (3D) bioprinting. Bone tissue engineering is a branch of regenerative medicine that aims to find new solutions to treat bone defects, which can be repaired by 3D printed living tissues. Its aim is to overcome the limitations of conventional treatment options by improving osteoinduction and osteoconduction. Several techniques of bone bioprinting have been developed: inkjet, extrusion, and light-based 3D printers are nowadays available. Bioinks, i.e., the printing materials, also presented an evolution over the years. It seems that these new technologies might be extremely promising for bone regeneration. The purpose of the present review is to give a comprehensive summary of the past, the present, and future developme...
Background Fully adjustable articulators and pantographs record and reproduce individual mandibul... more Background Fully adjustable articulators and pantographs record and reproduce individual mandibular movements. Although these instruments are accurate, they are operator-dependant and time-consuming. Pantographic recording is affected by inter and intra operator variability in the individuation of clinical reference points and afterwards in reading pantographic recording themselves. Finally only border movements can be reproduced. Methods Bionic Jaw Motion system is based on two components: a jaw movement analyzer and a robotic device that accurately reproduces recorded movements. The jaw movement analyzer uses an optoelectronic motion system technology made of a high frequency filming camera that acquires 140frames per second and a custom designed software that recognizes and determines the relative distance at each point in time of markers with known geometries connected to each jaw. Circumferential modified retainers connect markers and do not cover any occlusal surfaces neither ...
The International journal of oral & maxillofacial implants
This research aimed to assess whether pink-shaded anodized surfaces could enhance the adhesion of... more This research aimed to assess whether pink-shaded anodized surfaces could enhance the adhesion of soft tissue cells compared with untreated machined titanium surfaces. Two types of Ti-Al-V titanium samples were prepared: machined titanium (Ti) and anodized titanium (AnoTi). The microstructure was studied by means of a scanning electron microscope. X-ray photoelectron spectroscopy (XPS) was carried out as well. The wetting properties were investigated by the sessile drop technique with water and diiodomethane. To investigate the biologic response in vitro, the epithelial cell line HaCaT and the fibroblastic cell line NHDF were used. Cell adhesion, morphology, and proliferation were evaluated. The microstructure of the tested surfaces was irregularly smooth for both types of samples with no relevant morphologic differences. The XPS and HR-XPS performed on the AnoTi samples confirmed the presence of Ti, O, and C, along with Ti oxides. Following the optical contact angle measurements, t...
Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft, 2018
Plasma of argon treatment was demonstrated to increase material surface energy leading to stronge... more Plasma of argon treatment was demonstrated to increase material surface energy leading to stronger and faster interaction with cells. The aim of the present in vitro study was to test the effect of plasma treatment on different graft materials. Synthetic hydroxyapatite (Mg-HA), biphasic calcium phosphate (BCP), cancellous and cortical xenogeneic bone matrices (CaBM, CoBM) were used representing commonly used classes of bone substitute materials. Fifty serially numbered disks with a 10mm-diameter from each graft material were randomly divided into two groups: test group (argon plasma treatment) and control group (absence of treatment). Cell morphology (using pre-osteoblastic murine cells) and protein adsorption were analyzed at all samples from both the test and control group. Differences between groups were analyzed using the Mann-Whitney test setting the level of significance at p<0.05. Plasma treatment significantly increased the protein adsorption at all samples. Similarly, pl...
Bone formation involves a complex crosstalk between endothelial cells (EC) and osteodifferentiati... more Bone formation involves a complex crosstalk between endothelial cells (EC) and osteodifferentiating stem cells. This functional interplay is greatly mediated by the paracrine and autocrine action of soluble factors released at the vasculature-bone interface. This study elucidates the molecular and functional responses triggered by this intimate interaction. In this study, we showed that human dermal microvascular endothelial cells (HMEC) induced the expression of pro-angiogenic factors in stem cells from human exfoliated deciduous teeth (SHED) and sustain their osteo-differentiation at the same time. In contrast, osteodifferentiating SHED increased EC recruitment and promoted the formation of complex vascular networks. Moreover, HMEC enhanced anaerobic glycolysis in proliferating SHED without compromising their ability to undergo the oxidative metabolic shift required for adequate osteo-differentiation. Taken together, these findings provide novel insights into the molecular mechani...
Intra-articular infusions of adipose tissue-derived stem cells (ASCs) are a promising tool for bo... more Intra-articular infusions of adipose tissue-derived stem cells (ASCs) are a promising tool for bone regenerative medicine, thanks to their multilineage differentiating ability. One major limitation of ASCs is represented by the necessity to be isolated and expanded through in vitro culture, thus a strong interest was generated by the adipose stromal vascular fraction (SVF), the non-cultured fraction of ASCs. Besides the easiness of retrieval, handling and good availability, SVF is a heterogeneous population able to differentiate in vitro into osteoblasts, chondrocytes and adipocytes, according to the different stimuli received. We investigated and compared the bone regenerative potential of SVF and ASCs, through their ability to grow on SmartBone®, a composite xenohybrid bone scaffold. SVF plated on SmartBone® showed better osteoinductive capabilities than ASCs. Collagen I, osteocalcin and TGF↕ markedly stained the new tissue on SmartBone®; microCT analysis indicated a progressive i...
This retrospective study aimed to investigate whether a mandibular implant-retained overdenture d... more This retrospective study aimed to investigate whether a mandibular implant-retained overdenture designed to counteract the rotation of the denture might influence the clinical outcome, as evaluated through the prosthetic maintenance interventions. The amount of repairs and relines of the mandibular and maxillary dentures required in an experimental group (6 patients wearing an implant-retained overdenture with a metal frame counteracting the rotation) and a control group (6 patients wearing an implant-retained overdenture allowing the rotation) was compared. Both mandibular and maxillary dentures needed few repairs or relines. The 2 types of dentures showed a similar number of maintenance interventions.
Reconstruction of bony defects is challenging when conventional grafting methods are used because... more Reconstruction of bony defects is challenging when conventional grafting methods are used because of their intrinsic limitations (biological cost and/or biological properties). Bone regeneration techniques are rapidly evolving since the introduction of three-dimensional (3D) bioprinting. Bone tissue engineering is a branch of regenerative medicine that aims to find new solutions to treat bone defects, which can be repaired by 3D printed living tissues. Its aim is to overcome the limitations of conventional treatment options by improving osteoinduction and osteoconduction. Several techniques of bone bioprinting have been developed: inkjet, extrusion, and light-based 3D printers are nowadays available. Bioinks, i.e., the printing materials, also presented an evolution over the years. It seems that these new technologies might be extremely promising for bone regeneration. The purpose of the present review is to give a comprehensive summary of the past, the present, and future developme...
Background Fully adjustable articulators and pantographs record and reproduce individual mandibul... more Background Fully adjustable articulators and pantographs record and reproduce individual mandibular movements. Although these instruments are accurate, they are operator-dependant and time-consuming. Pantographic recording is affected by inter and intra operator variability in the individuation of clinical reference points and afterwards in reading pantographic recording themselves. Finally only border movements can be reproduced. Methods Bionic Jaw Motion system is based on two components: a jaw movement analyzer and a robotic device that accurately reproduces recorded movements. The jaw movement analyzer uses an optoelectronic motion system technology made of a high frequency filming camera that acquires 140frames per second and a custom designed software that recognizes and determines the relative distance at each point in time of markers with known geometries connected to each jaw. Circumferential modified retainers connect markers and do not cover any occlusal surfaces neither ...
The International journal of oral & maxillofacial implants
This research aimed to assess whether pink-shaded anodized surfaces could enhance the adhesion of... more This research aimed to assess whether pink-shaded anodized surfaces could enhance the adhesion of soft tissue cells compared with untreated machined titanium surfaces. Two types of Ti-Al-V titanium samples were prepared: machined titanium (Ti) and anodized titanium (AnoTi). The microstructure was studied by means of a scanning electron microscope. X-ray photoelectron spectroscopy (XPS) was carried out as well. The wetting properties were investigated by the sessile drop technique with water and diiodomethane. To investigate the biologic response in vitro, the epithelial cell line HaCaT and the fibroblastic cell line NHDF were used. Cell adhesion, morphology, and proliferation were evaluated. The microstructure of the tested surfaces was irregularly smooth for both types of samples with no relevant morphologic differences. The XPS and HR-XPS performed on the AnoTi samples confirmed the presence of Ti, O, and C, along with Ti oxides. Following the optical contact angle measurements, t...
Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft, 2018
Plasma of argon treatment was demonstrated to increase material surface energy leading to stronge... more Plasma of argon treatment was demonstrated to increase material surface energy leading to stronger and faster interaction with cells. The aim of the present in vitro study was to test the effect of plasma treatment on different graft materials. Synthetic hydroxyapatite (Mg-HA), biphasic calcium phosphate (BCP), cancellous and cortical xenogeneic bone matrices (CaBM, CoBM) were used representing commonly used classes of bone substitute materials. Fifty serially numbered disks with a 10mm-diameter from each graft material were randomly divided into two groups: test group (argon plasma treatment) and control group (absence of treatment). Cell morphology (using pre-osteoblastic murine cells) and protein adsorption were analyzed at all samples from both the test and control group. Differences between groups were analyzed using the Mann-Whitney test setting the level of significance at p<0.05. Plasma treatment significantly increased the protein adsorption at all samples. Similarly, pl...
Bone formation involves a complex crosstalk between endothelial cells (EC) and osteodifferentiati... more Bone formation involves a complex crosstalk between endothelial cells (EC) and osteodifferentiating stem cells. This functional interplay is greatly mediated by the paracrine and autocrine action of soluble factors released at the vasculature-bone interface. This study elucidates the molecular and functional responses triggered by this intimate interaction. In this study, we showed that human dermal microvascular endothelial cells (HMEC) induced the expression of pro-angiogenic factors in stem cells from human exfoliated deciduous teeth (SHED) and sustain their osteo-differentiation at the same time. In contrast, osteodifferentiating SHED increased EC recruitment and promoted the formation of complex vascular networks. Moreover, HMEC enhanced anaerobic glycolysis in proliferating SHED without compromising their ability to undergo the oxidative metabolic shift required for adequate osteo-differentiation. Taken together, these findings provide novel insights into the molecular mechani...
Intra-articular infusions of adipose tissue-derived stem cells (ASCs) are a promising tool for bo... more Intra-articular infusions of adipose tissue-derived stem cells (ASCs) are a promising tool for bone regenerative medicine, thanks to their multilineage differentiating ability. One major limitation of ASCs is represented by the necessity to be isolated and expanded through in vitro culture, thus a strong interest was generated by the adipose stromal vascular fraction (SVF), the non-cultured fraction of ASCs. Besides the easiness of retrieval, handling and good availability, SVF is a heterogeneous population able to differentiate in vitro into osteoblasts, chondrocytes and adipocytes, according to the different stimuli received. We investigated and compared the bone regenerative potential of SVF and ASCs, through their ability to grow on SmartBone®, a composite xenohybrid bone scaffold. SVF plated on SmartBone® showed better osteoinductive capabilities than ASCs. Collagen I, osteocalcin and TGF↕ markedly stained the new tissue on SmartBone®; microCT analysis indicated a progressive i...
This retrospective study aimed to investigate whether a mandibular implant-retained overdenture d... more This retrospective study aimed to investigate whether a mandibular implant-retained overdenture designed to counteract the rotation of the denture might influence the clinical outcome, as evaluated through the prosthetic maintenance interventions. The amount of repairs and relines of the mandibular and maxillary dentures required in an experimental group (6 patients wearing an implant-retained overdenture with a metal frame counteracting the rotation) and a control group (6 patients wearing an implant-retained overdenture allowing the rotation) was compared. Both mandibular and maxillary dentures needed few repairs or relines. The 2 types of dentures showed a similar number of maintenance interventions.
Uploads
Papers by Federico Mussano