Non-LTR retrotransposons, also known as long interspersed nuclear elements (LINEs), are transposable elements that encode a reverse transcriptase and insert into genomic locations via RNA intermediates. The sequence analysis of a cDNA... more
Non-LTR retrotransposons, also known as long interspersed nuclear elements (LINEs), are transposable elements that encode a reverse transcriptase and insert into genomic locations via RNA intermediates. The sequence analysis of a cDNA library constructed from mRNA of the salivary glands of R. americana showed the presence of putative class I elements. The cDNA clone with homology to a reverse transcriptase was the starting point for the present study. Genomic phage was isolated and sequenced and the molecular structure of the element was characterized as being a non-LTR retrotransposable element. Southern blot analysis indicated that this transposable element is represented by repeat sequences in the genome of R. americana. Chromosome tips were consistently positive when this element was used as probe in in-situ hybridization. Real-time RT-PCR showed that this retrotransposon is transcribed at different periods of larval development. Most interesting, the silencing of this retrotransposon in R. americana by RNA interference resulted in reduced transcript levels and in accelerated larval development.
We have sequenced a 2.5-kb DNA fragment of the B-2 DNA puff from the sciarid Rhynchosciara americana and have defined its transcription unit. This puff is active during the formation of the communal cocoon, which is important for... more
We have sequenced a 2.5-kb DNA fragment of the B-2 DNA puff from the sciarid Rhynchosciara americana and have defined its transcription unit. This puff is active during the formation of the communal cocoon, which is important for successful metamorphosis of this species and coincides with the final cycle of polytenization in its salivary glands. The B-2 polypeptide, together with the products of two other previously characterized DNA puffs, seems to be engaged in an interaction that results in a gradual modification and hardening of the cocoon structure. The B-2 messenger is temporally regulated in apparent coordination with the other puff products. The predicted polypeptide has characteristics similar to polypeptides from previously sequenced DNA puff genes, in particular those from the R. americana C-8 gene and the Bradysia hygida C-4 gene. The cloned sequence of the B-2 puff is differentially amplified in the three gland regions examined, achieving its highest amplification level of approximately fourfold (two extra cycles) in the anterior segment of the gland. The C-3 DNA puff sequence was also found to be differentially amplified in the different gland regions. Implications of the widespread presence of DNA amplification as a form of gene regulation in the Sciaridae are discussed.
An hsc70 homologue gene (Rahsc70) of the diptera Rhynchosciara americana was isolated and characterized. We were able to determine the mRNA sequence from an EST of salivary gland cDNA library, and a Rahsc70 cDNA cassette was used as a... more
An hsc70 homologue gene (Rahsc70) of the diptera Rhynchosciara americana was isolated and characterized. We were able to determine the mRNA sequence from an EST of salivary gland cDNA library, and a Rahsc70 cDNA cassette was used as a probe to isolate the genomic region from a genomic library. The mRNA expression of this gene parallels the 2B puff expansion, suggesting its involvement in protein processing, since this larval period corresponds to a high synthetic activity period. During heat shock stress conditions, hsc70 expression decreased. In situ hybridization of polytene chromosomes showed that the Rahsc70 gene is located near the C3 DNA puff. The cellular localization of Hsc70 protein showed this protein in the cytoplasm and in the nucleus.
Ribosomal RNA genes are encoded by large units clustered (18S, 5S, and 28S) in the nucleolar organizer region in several organisms. Sometimes additional insertions are present in the coding region for the 28S rDNA. These insertions are... more
Ribosomal RNA genes are encoded by large units clustered (18S, 5S, and 28S) in the nucleolar organizer region in several organisms. Sometimes additional insertions are present in the coding region for the 28S rDNA. These insertions are specific non-long terminal repeat retrotransposons that have very restricted integration targets within the genome. The retrotransposon present in the genome of Rhynchosciara americana, RaR2, was isolated by the screening of a genomic library. Sequence analysis showed the presence of conserved regions, such as a reverse transcriptase domain and a zinc finger motif in the amino terminal region. The insertion site was highly conserved in R. americana and a phylogenetic analysis showed that this element belongs to the R2 clade. The chromosomal localization confirmed that the RaR2 mobile element was inserted into a specific site in the rDNA gene. The expression level of RaR2 in salivary glands during larval development was determined by quantitative RT-PCR, and the increase of relative expression in the 3P of the fourth instar larval could be related to intense gene activity characteristic of this stage. 5′-Truncated elements were identified in different DNA samples. Additionally, in three other Rhynchosciara species, the R2 element was present as a full-length element.
Low-intensity laser therapy (LILT) with adequate wavelength, intensity, and dose can accelerate tissue repair. However, there is still disperse information about light characteristics. Several works indicate that laser polarization plays... more
Low-intensity laser therapy (LILT) with adequate wavelength, intensity, and dose can accelerate tissue repair. However, there is still disperse information about light characteristics. Several works indicate that laser polarization plays an important role on the wound healing process. This study was conducted to verify the degree of linear polarization in normal and pathological rat skin samples. Artificial burns about 6
Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via β(2)-adrenoceptor (β2-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of... more
Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via β(2)-adrenoceptor (β2-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR and α(2C)-AR (α(2A) /α(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In α(2A) /α(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (µCT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-κB (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine a...
Synopsis Our goal was to study the effect of Gp 4 G on skin tissues and unravel its intracellular action mechanisms. The effects of Gp 4 G formulation, a liposomic solution of Artemia salina extract, on several epidermal, depmal, and hair... more
Synopsis Our goal was to study the effect of Gp 4 G on skin tissues and unravel its intracellular action mechanisms. The effects of Gp 4 G formulation, a liposomic solution of Artemia salina extract, on several epidermal, depmal, and hair follicle structures were quantifi ed. A 50% increase in hair length and a 30% increase in the number of papilla cells were explained by the changes in the telogen/anagen hair follicle phases. Increasing skin blood vessels and fi broblast activation modifi ed collagen arrangement in dermal tissues. Imunohistochemical staining revealed expressive increases of versican (VER) deposition in the treated animals (68%). Hela and fi bro-blast cells were used as in vitro models. Gp 4 G enters both cell lines, with a hyperbolic saturation profi le inducing an increase in the viabilities of Hela and fi broblast cells. Intracellular ATP and other nucleotides were quantifi ed in Hela cells showing a 38% increase in intracellular ATP concentration and increases in the intracellular concentration of tri-, di-, and monophosphate nucleosides, changing the usual quasi-equilibrium state of nucleotide concentrations. We propose that this change in nucleotide equilibrium affects several biochemical pathways and explains the cell and tissue activations observed experimentally.