Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinc... more Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinct, characterized by mass attacks that may cause envenomation or death. From the years 2000-2013, 77,066 bee accidents occurred in Brazil. Bee venom comprises several substances, including melittin and phospholipase A2 (PLA2). Due to the lack of antivenom for bee envenomation, this study aimed to produce human monoclonal antibody fragments (single chain fragment variable; scFv), by using phage display technology. These fragments targeted melittin and PLA2, the two major components of bee venom, to minimize their toxic effects in cases of mass envenomation. Two phage antibody selections were performed using purified melittin. As the commercial melittin is contaminated with PLA2, phages specific to PLA2 were also obtained during one of the selections. Specific clones for melittin and PLA2 were selected for the production of soluble scFvs, named here Afribumabs: prefix: afrib- (from Africanized bee); stem/suffix: -umab (fully human antibody). Afribumabs 1 and 2 were tested in in vitro and in vivo assays to assess their ability to inhibit the toxic actions of purified melittin, PLA2, and crude bee venom. Afribumabs reduced hemolysis caused by purified melittin and PLA2 and by crude venom in vitro and reduced edema formation in the paws of mice and prolonged the survival of venom-injected animals in vivo. These results demonstrate that Afribumabs may contribute to the production of the first non-heterologous antivenom treatment against bee envenomation. Such a treatment may overcome some of the difficulties associated with conventional immunotherapy techniques.
The journal of venomous animals and toxins including tropical diseases, 2015
The yellow scorpion Tityus serrulatus (Ts) is responsible for the highest number of accidents and... more The yellow scorpion Tityus serrulatus (Ts) is responsible for the highest number of accidents and the most severe scorpion envenoming in Brazil. Although its venom has been studied since the 1950s, it presents a number of orphan peptides that have not been studied so far. The objective of our research was to isolate and identify the components present in the fractions VIIIA and VIIIB of Ts venom, in order to search for a novel toxin. The major isolated toxins were further investigated for macrophage modulation. The fractions VIIIA and VIIIB, obtained from Ts venom cation exchange chromatography, were rechromatographed on a C18 column (4.6 × 250 mm) followed by a reversed-phase chromatography using another C18 column (2.1 × 250 mm). The main eluted peaks were analyzed by MALDI-TOF and Edman's degradation and tested on macrophages. The previously described toxins Ts2, Ts3-KS, Ts4, Ts8, Ts8 propeptide, Ts19 Frag-II and the novel peptide Ts19 Frag-I were isolated from the fractions ...
The Kv1.3 channel is a novel target for immunomodulation of autoreactive effector memory T cells,... more The Kv1.3 channel is a novel target for immunomodulation of autoreactive effector memory T cells, which play a major role in the pathogenesis of autoimmune diseases. In this study, the Ts6 and Ts15 toxins isolated from Tityus serrulatus (Ts) were investigated for their immunosuppressant roles on CD4(+) cell subsets: naive, effector - TEF , central memory - TCM and effector memory - TEM . The electrophysiological assays confirmed that both toxins were able to block Kv1.3 channels. Interestingly, an extended Kv channel screening shows that Ts15 blocks Kv2.1 channels. Ts6 and Ts15 significantly inhibit the TEM proliferation and INF-γ production; however, Ts15 also inhibits other CD4(+) cell subsets (naive, TEF and TCM ). Based on the Ts15 inhibitory effect of proliferation of all CD4(+) cell subsets, and based on its blocking effect on Kv2.1, we investigated the Kv2.1 expression in T cells. The assays showed that CD4(+) and CD8(+) cells express the Kv2.1 channels mainly extracellular w...
Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is ... more Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts in vitro, in animals and in humans (a total of 151 references). Over the past three decades (since 1981), our research team has undertaken several studies involving the isolation, purification and characterization of toxins from the Brazilian yellow scorpion Tityus serrulatus (Ts). The present review deals with Ts venom and toxins studies and focuses on their effects on all anatomic systems. Indeed, different human systems are known to be affected by Ts venom components. In this research, we review and discuss the clinical/laboratorial manifestations and pathophysiology of Ts envenoming on the different anatomical systems: nervous, muscular, immune, cardiovascular, respiratory, urinary, endocrine and exocrine, digestive, integumentary, skeletal and reproductive systems. All this modulating and blocking action of Ts neurotoxins on ion channels can be correlated with the effects on neurons and skeletal muscles.
Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) an... more Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) and Na(+) channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and ...
The role of diet in venom composition has been a topic of intense research interest. This work pr... more The role of diet in venom composition has been a topic of intense research interest. This work presents evidence that the variation in the venom composition from the scorpion Tityus serrulatus (Ts) is closely associated with post-starvation extraction time and prey-specific diet. The scorpions were fed with cockroach, cricket, peanut beetle or giant Tenebrio. The venoms demonstrated a pronounced difference in the total protein and toxins composition, which was evaluated by electrophoresis, reversed-phase chromatography, densitometry, hyaluronidase activity and N-terminal sequencing. Indeed, many toxins and peptides, such as Ts1, Ts2, Ts4, Ts5, Ts6, Ts15, Ts19 frag. II, hypotensins 1 and 3, PAPE peptide and peptide 9797 (first described in Ts venom), were all identified in different proportions in the analyzed Ts venoms. This study is pioneer on assessing the influence of the starvation time and the prey diet on hyaluronidase activity as well as to describe a modification of Tricine-gel-electrophoresis to evaluate this enzyme activity. Altogether, this study reveal a large contribution of the extraction time and diet on Ts venom variability as well as present a background to recommend the cockroach diet to obtain higher protein content and the cricket diet to obtain higher hyaluronidase specific activity.
In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion env... more In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose w...
Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for v... more Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.
In various types of snake venom, the major toxic components are proteinases and members of the ph... more In various types of snake venom, the major toxic components are proteinases and members of the phospholipase A2 family, although other enzymes also contribute to the toxicity. In this study, we evaluated the proteolytic, phospholipase, and L-Amino acid oxidase activities in the venom of five Bothrops species-Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni, Bothrops neuwiedi, and Bothrops alternatus-all of which are used in the production of commercial antivenom, prepared in horses. The enzymatic activities of each species' venom were classified as high, moderate, or low. B. moojeni venom demonstrated the highest enzymatic activity profile, followed by the venom of B. neuwiedi, B. jararacussu, B. jararaca, and B. alternatus. To our knowledge, this is the first study to compare all of these enzymes from multiple species, which is significant in view of the activity of L-amino acid oxidase across Bothrops species.
Journal of Biochemical and Molecular Toxicology, 2012
The study of venom components is an important step toward understanding the mechanism of action o... more The study of venom components is an important step toward understanding the mechanism of action of such venoms and is indispensable for the development of new therapies. This work aimed to investigate the venom of Lachesis muta rhombeata and evaluate enzymes related to its toxicity. Phospholipase A2 (PLA(2)), L-amino acid oxidase (LAAO), and proteinase activities were measured, and the molecular weights were estimated. We found the venom to contain one PLA(2) (17 kDa), one LAAO (132 kDa), and three serine proteinases (40, 31, and 20 kDa). Although only serine proteinases were observed in the zymogram, metalloproteinases were found to contribute more to the total proteolytic activity than did serine proteinases. The work confirmed the presence of highly active enzymes; and, moreover, we proposed a novel method for confirming the presence of LAAOs by zymography. We also suggested a simple step to increase the sensitivity of proteinase assays.
The hybrid created from the crossbreeding of European and African bees, known as the Africanised ... more The hybrid created from the crossbreeding of European and African bees, known as the Africanised bee, has provided numerous advantages for current beekeeping. However, this new species exhibits undesirable behaviours, such as colony defence instinct and a propensity to attack en masse, which can result in serious accidents. To date, there is no effective treatment for cases of Africanised bee envenomation. One promising technique for developing an efficient antivenom is the use of phage display technology, which enables the production of human antibodies, thus avoiding the complications of serum therapy, such as anaphylaxis and serum sickness. The aim of this study was to produce human monoclonal single-chain Fv (scFv) antibody fragments capable of inhibiting the toxic effects of Africanised bee venom. We conducted four rounds of selection of antibodies against the venom and three rounds of selection of antibodies against purified melittin. Three clones were selected and tested by enzyme-linked immunosorbent assay to verify their specificity for melittin and phospholipase A2. Two clones (C5 and C12) were specific for melittin, and one (A7) was specific for phospholipase A2. In a kinetic haemolytic assay, these clones were evaluated individually and in pairs. The A7-C12 combination had the best synergistic effect and was chosen to be used in the assays of myotoxicity inhibition and lethality. The A7-C12 combination inhibited the in vivo myotoxic effect of the venom and increased the survival of treated animals.
Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulat... more Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulatus (Ts). It is a protein presenting 49 amino acid residues, three disulfide bridges, Mr 5534Da and was classified as a new member of class (subfamily) 2 of the β-KTxs, the second one described for Ts scorpion. The β-KTx family is composed by two-domain peptides: N-terminal helical domain (NHD), with cytolytic activity, and a C-terminal CSαβ domain (CCD), with Kv blocking activity. The extensive electrophysiological screening (16 Kv channels and 5 Nav channels) showed that Ts19 Frag-II presents a specific and significant blocking effect on Kv1.2 (IC50 value of 544±32nM). However, no cytolytic activity was observed with this toxin. We conclude that the absence of 9 amino acid residues from the N-terminal sequence (compared to Ts19 Frag-I) is responsible for the absence of cytolytic activity. In order to prove this hypothesis, we synthesized the peptide with these 9 amino acid residues, called Ts19 Frag-III. As expected, Ts19 Frag-III showed to be cytolytic and did not block the Kv1.2 channel. The post-translational modifications of Ts19 and its fragments (I-III) are also discussed here. A mechanism of post-translational processing (post-splitting) is suggested to explain Ts19 fragments production. In addition to the discovery of this new toxin, this report provides further evidence for the existence of several compounds in the scorpion venom contributing to the diversity of the venom arsenal.
In Brazil, scorpion envenomation is an important public health problem. The yellow scorpion, Tity... more In Brazil, scorpion envenomation is an important public health problem. The yellow scorpion, Tityus serrulatus (Ts), is considered the most dangerous species in the country, being responsible for the most severe clinical cases of envenomation. Currently, the administration of serum produced in horses is recognized and used as a treatment for accidents with scorpions. However, horse herds' maintenance is costly and the antibodies are heterologous, which can cause anaphylaxis and Serum Sickness. In the present work, a human monoclonal fragment antibody, Serrumab, has been analysed. Toxin neutralizing effects of Serrumab were evaluated using a two-electrode voltage-clamp technique. The results show that Serrumab presented a high neutralizing effect against Ts β-toxins (Ts1, 43.2% and Ts2, 68.8%) and none or low neutralizing effect against α-toxins (Ts3, 0% and Ts5, 10%). Additional experiments demonstrated that Serrumab was also able to neutralize the action of toxins from other sc...
Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinc... more Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinct, characterized by mass attacks that may cause envenomation or death. From the years 2000-2013, 77,066 bee accidents occurred in Brazil. Bee venom comprises several substances, including melittin and phospholipase A2 (PLA2). Due to the lack of antivenom for bee envenomation, this study aimed to produce human monoclonal antibody fragments (single chain fragment variable; scFv), by using phage display technology. These fragments targeted melittin and PLA2, the two major components of bee venom, to minimize their toxic effects in cases of mass envenomation. Two phage antibody selections were performed using purified melittin. As the commercial melittin is contaminated with PLA2, phages specific to PLA2 were also obtained during one of the selections. Specific clones for melittin and PLA2 were selected for the production of soluble scFvs, named here Afribumabs: prefix: afrib- (from Africanized bee); stem/suffix: -umab (fully human antibody). Afribumabs 1 and 2 were tested in in vitro and in vivo assays to assess their ability to inhibit the toxic actions of purified melittin, PLA2, and crude bee venom. Afribumabs reduced hemolysis caused by purified melittin and PLA2 and by crude venom in vitro and reduced edema formation in the paws of mice and prolonged the survival of venom-injected animals in vivo. These results demonstrate that Afribumabs may contribute to the production of the first non-heterologous antivenom treatment against bee envenomation. Such a treatment may overcome some of the difficulties associated with conventional immunotherapy techniques.
The journal of venomous animals and toxins including tropical diseases, 2015
The yellow scorpion Tityus serrulatus (Ts) is responsible for the highest number of accidents and... more The yellow scorpion Tityus serrulatus (Ts) is responsible for the highest number of accidents and the most severe scorpion envenoming in Brazil. Although its venom has been studied since the 1950s, it presents a number of orphan peptides that have not been studied so far. The objective of our research was to isolate and identify the components present in the fractions VIIIA and VIIIB of Ts venom, in order to search for a novel toxin. The major isolated toxins were further investigated for macrophage modulation. The fractions VIIIA and VIIIB, obtained from Ts venom cation exchange chromatography, were rechromatographed on a C18 column (4.6 × 250 mm) followed by a reversed-phase chromatography using another C18 column (2.1 × 250 mm). The main eluted peaks were analyzed by MALDI-TOF and Edman's degradation and tested on macrophages. The previously described toxins Ts2, Ts3-KS, Ts4, Ts8, Ts8 propeptide, Ts19 Frag-II and the novel peptide Ts19 Frag-I were isolated from the fractions ...
The Kv1.3 channel is a novel target for immunomodulation of autoreactive effector memory T cells,... more The Kv1.3 channel is a novel target for immunomodulation of autoreactive effector memory T cells, which play a major role in the pathogenesis of autoimmune diseases. In this study, the Ts6 and Ts15 toxins isolated from Tityus serrulatus (Ts) were investigated for their immunosuppressant roles on CD4(+) cell subsets: naive, effector - TEF , central memory - TCM and effector memory - TEM . The electrophysiological assays confirmed that both toxins were able to block Kv1.3 channels. Interestingly, an extended Kv channel screening shows that Ts15 blocks Kv2.1 channels. Ts6 and Ts15 significantly inhibit the TEM proliferation and INF-γ production; however, Ts15 also inhibits other CD4(+) cell subsets (naive, TEF and TCM ). Based on the Ts15 inhibitory effect of proliferation of all CD4(+) cell subsets, and based on its blocking effect on Kv2.1, we investigated the Kv2.1 expression in T cells. The assays showed that CD4(+) and CD8(+) cells express the Kv2.1 channels mainly extracellular w...
Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is ... more Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts in vitro, in animals and in humans (a total of 151 references). Over the past three decades (since 1981), our research team has undertaken several studies involving the isolation, purification and characterization of toxins from the Brazilian yellow scorpion Tityus serrulatus (Ts). The present review deals with Ts venom and toxins studies and focuses on their effects on all anatomic systems. Indeed, different human systems are known to be affected by Ts venom components. In this research, we review and discuss the clinical/laboratorial manifestations and pathophysiology of Ts envenoming on the different anatomical systems: nervous, muscular, immune, cardiovascular, respiratory, urinary, endocrine and exocrine, digestive, integumentary, skeletal and reproductive systems. All this modulating and blocking action of Ts neurotoxins on ion channels can be correlated with the effects on neurons and skeletal muscles.
Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) an... more Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) and Na(+) channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and ...
The role of diet in venom composition has been a topic of intense research interest. This work pr... more The role of diet in venom composition has been a topic of intense research interest. This work presents evidence that the variation in the venom composition from the scorpion Tityus serrulatus (Ts) is closely associated with post-starvation extraction time and prey-specific diet. The scorpions were fed with cockroach, cricket, peanut beetle or giant Tenebrio. The venoms demonstrated a pronounced difference in the total protein and toxins composition, which was evaluated by electrophoresis, reversed-phase chromatography, densitometry, hyaluronidase activity and N-terminal sequencing. Indeed, many toxins and peptides, such as Ts1, Ts2, Ts4, Ts5, Ts6, Ts15, Ts19 frag. II, hypotensins 1 and 3, PAPE peptide and peptide 9797 (first described in Ts venom), were all identified in different proportions in the analyzed Ts venoms. This study is pioneer on assessing the influence of the starvation time and the prey diet on hyaluronidase activity as well as to describe a modification of Tricine-gel-electrophoresis to evaluate this enzyme activity. Altogether, this study reveal a large contribution of the extraction time and diet on Ts venom variability as well as present a background to recommend the cockroach diet to obtain higher protein content and the cricket diet to obtain higher hyaluronidase specific activity.
In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion env... more In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose w...
Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for v... more Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.
In various types of snake venom, the major toxic components are proteinases and members of the ph... more In various types of snake venom, the major toxic components are proteinases and members of the phospholipase A2 family, although other enzymes also contribute to the toxicity. In this study, we evaluated the proteolytic, phospholipase, and L-Amino acid oxidase activities in the venom of five Bothrops species-Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni, Bothrops neuwiedi, and Bothrops alternatus-all of which are used in the production of commercial antivenom, prepared in horses. The enzymatic activities of each species' venom were classified as high, moderate, or low. B. moojeni venom demonstrated the highest enzymatic activity profile, followed by the venom of B. neuwiedi, B. jararacussu, B. jararaca, and B. alternatus. To our knowledge, this is the first study to compare all of these enzymes from multiple species, which is significant in view of the activity of L-amino acid oxidase across Bothrops species.
Journal of Biochemical and Molecular Toxicology, 2012
The study of venom components is an important step toward understanding the mechanism of action o... more The study of venom components is an important step toward understanding the mechanism of action of such venoms and is indispensable for the development of new therapies. This work aimed to investigate the venom of Lachesis muta rhombeata and evaluate enzymes related to its toxicity. Phospholipase A2 (PLA(2)), L-amino acid oxidase (LAAO), and proteinase activities were measured, and the molecular weights were estimated. We found the venom to contain one PLA(2) (17 kDa), one LAAO (132 kDa), and three serine proteinases (40, 31, and 20 kDa). Although only serine proteinases were observed in the zymogram, metalloproteinases were found to contribute more to the total proteolytic activity than did serine proteinases. The work confirmed the presence of highly active enzymes; and, moreover, we proposed a novel method for confirming the presence of LAAOs by zymography. We also suggested a simple step to increase the sensitivity of proteinase assays.
The hybrid created from the crossbreeding of European and African bees, known as the Africanised ... more The hybrid created from the crossbreeding of European and African bees, known as the Africanised bee, has provided numerous advantages for current beekeeping. However, this new species exhibits undesirable behaviours, such as colony defence instinct and a propensity to attack en masse, which can result in serious accidents. To date, there is no effective treatment for cases of Africanised bee envenomation. One promising technique for developing an efficient antivenom is the use of phage display technology, which enables the production of human antibodies, thus avoiding the complications of serum therapy, such as anaphylaxis and serum sickness. The aim of this study was to produce human monoclonal single-chain Fv (scFv) antibody fragments capable of inhibiting the toxic effects of Africanised bee venom. We conducted four rounds of selection of antibodies against the venom and three rounds of selection of antibodies against purified melittin. Three clones were selected and tested by enzyme-linked immunosorbent assay to verify their specificity for melittin and phospholipase A2. Two clones (C5 and C12) were specific for melittin, and one (A7) was specific for phospholipase A2. In a kinetic haemolytic assay, these clones were evaluated individually and in pairs. The A7-C12 combination had the best synergistic effect and was chosen to be used in the assays of myotoxicity inhibition and lethality. The A7-C12 combination inhibited the in vivo myotoxic effect of the venom and increased the survival of treated animals.
Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulat... more Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulatus (Ts). It is a protein presenting 49 amino acid residues, three disulfide bridges, Mr 5534Da and was classified as a new member of class (subfamily) 2 of the β-KTxs, the second one described for Ts scorpion. The β-KTx family is composed by two-domain peptides: N-terminal helical domain (NHD), with cytolytic activity, and a C-terminal CSαβ domain (CCD), with Kv blocking activity. The extensive electrophysiological screening (16 Kv channels and 5 Nav channels) showed that Ts19 Frag-II presents a specific and significant blocking effect on Kv1.2 (IC50 value of 544±32nM). However, no cytolytic activity was observed with this toxin. We conclude that the absence of 9 amino acid residues from the N-terminal sequence (compared to Ts19 Frag-I) is responsible for the absence of cytolytic activity. In order to prove this hypothesis, we synthesized the peptide with these 9 amino acid residues, called Ts19 Frag-III. As expected, Ts19 Frag-III showed to be cytolytic and did not block the Kv1.2 channel. The post-translational modifications of Ts19 and its fragments (I-III) are also discussed here. A mechanism of post-translational processing (post-splitting) is suggested to explain Ts19 fragments production. In addition to the discovery of this new toxin, this report provides further evidence for the existence of several compounds in the scorpion venom contributing to the diversity of the venom arsenal.
In Brazil, scorpion envenomation is an important public health problem. The yellow scorpion, Tity... more In Brazil, scorpion envenomation is an important public health problem. The yellow scorpion, Tityus serrulatus (Ts), is considered the most dangerous species in the country, being responsible for the most severe clinical cases of envenomation. Currently, the administration of serum produced in horses is recognized and used as a treatment for accidents with scorpions. However, horse herds' maintenance is costly and the antibodies are heterologous, which can cause anaphylaxis and Serum Sickness. In the present work, a human monoclonal fragment antibody, Serrumab, has been analysed. Toxin neutralizing effects of Serrumab were evaluated using a two-electrode voltage-clamp technique. The results show that Serrumab presented a high neutralizing effect against Ts β-toxins (Ts1, 43.2% and Ts2, 68.8%) and none or low neutralizing effect against α-toxins (Ts3, 0% and Ts5, 10%). Additional experiments demonstrated that Serrumab was also able to neutralize the action of toxins from other sc...
Uploads
Papers by Manuela B Pucca