Neurorehabilitation and neural repair, Jan 14, 2015
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with s... more Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allody...
Neurorehabilitation and neural repair, Jan 14, 2015
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with s... more Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allody...
Neurorehabilitation and neural repair, Jan 3, 2015
In rat models of spinal cord injury, at least 3 different strategies can be used to promote long-... more In rat models of spinal cord injury, at least 3 different strategies can be used to promote long-term cortical reorganization: (1) active exercise above the level of the lesion; (2) passive exercise below the level of the lesion; and (3) serotonergic pharmacotherapy. Whether and how these potential therapeutic strategies-and their underlying mechanisms of action-interact remains unknown. In spinally transected adult rats, we compared the effects of active exercise above the level of the lesion (treadmill), passive exercise below the level of the lesion (bike), serotonergic pharmacotherapy (quipazine), and combinations of the above therapies (bike+quipazine, treadmill+quipazine, bike+treadmill+quipazine) on long-term cortical reorganization (9 weeks after the spinal transection). Cortical reorganization was measured as the percentage of cells recorded in the deafferented hindlimb cortex that responded to tactile stimulation of the contralateral forelimb. Bike and quipazine are "...
Vagus nerve stimulation (VNS) delivered during rehabilitative training enhances neuroplasticity a... more Vagus nerve stimulation (VNS) delivered during rehabilitative training enhances neuroplasticity and improves recovery in models of cortical ischemic stroke. However, VNS therapy has not been applied in a model of subcortical intracerebral hemorrhage (ICH). We hypothesized that VNS paired with rehabilitative training after ICH would enhance recovery of forelimb motor function beyond rehabilitative training alone. Rats were trained to perform an automated, quantitative measure of forelimb function. Once proficient, rats received an intrastriatal injection of bacterial collagenase to induce ICH. Rats then underwent VNS paired with rehabilitative training (VNS+Rehab; n=14) or rehabilitative training without VNS (Rehab; n=12). Rehabilitative training began ≥9 days after ICH and continued for 6 weeks. VNS paired with rehabilitative training significantly improved recovery of forelimb function when compared with rehabilitative training without VNS. The VNS+Rehab group displayed a 77% recov...
Cortical reorganization plays a significant role in recovery of function after injury of the cent... more Cortical reorganization plays a significant role in recovery of function after injury of the central nervous system. The neural mechanisms that underlie this reorganization may be the same as those normally responsible for skilled behaviors that accompany extended sensory experience and, if better understood, could provide a basis for further promoting recovery of function after injury. The work presented here extends studies of spontaneous cortical reorganization after spinal cord injury to the role of rehabilitative strategies on cortical reorganization. We use a complete spinal transection model to focus on cortical reorganization in response to serotonergic (5-HT) pharmacotherapy without any confounding effects from spared fibers left after partial lesions. 5-HT pharmacotherapy has previously been shown to improve behavioral outcome after SCI but the effect on cortical organization is unknown. After a complete spinal transection in the adult rat, 5-HT pharmacotherapy produced more reorganization in the sensorimotor cortex than would be expected by transection alone. This reorganization was dose dependent, extended into intact (forelimb) motor cortex, and, at least in the hindlimb sensorimotor cortex, followed a somatotopic arrangement. Animals with the greatest behavioral outcome showed the greatest extent of cortical reorganization suggesting that the reorganization is likely to be in response to both direct effects of 5-HT on cortical circuits and indirect effects in response to the behavioral improvement below the level of the lesion.
Neurorehabilitation and neural repair, Jan 14, 2015
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with s... more Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allody...
Neurorehabilitation and neural repair, Jan 14, 2015
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with s... more Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allody...
Neurorehabilitation and neural repair, Jan 3, 2015
In rat models of spinal cord injury, at least 3 different strategies can be used to promote long-... more In rat models of spinal cord injury, at least 3 different strategies can be used to promote long-term cortical reorganization: (1) active exercise above the level of the lesion; (2) passive exercise below the level of the lesion; and (3) serotonergic pharmacotherapy. Whether and how these potential therapeutic strategies-and their underlying mechanisms of action-interact remains unknown. In spinally transected adult rats, we compared the effects of active exercise above the level of the lesion (treadmill), passive exercise below the level of the lesion (bike), serotonergic pharmacotherapy (quipazine), and combinations of the above therapies (bike+quipazine, treadmill+quipazine, bike+treadmill+quipazine) on long-term cortical reorganization (9 weeks after the spinal transection). Cortical reorganization was measured as the percentage of cells recorded in the deafferented hindlimb cortex that responded to tactile stimulation of the contralateral forelimb. Bike and quipazine are "...
Vagus nerve stimulation (VNS) delivered during rehabilitative training enhances neuroplasticity a... more Vagus nerve stimulation (VNS) delivered during rehabilitative training enhances neuroplasticity and improves recovery in models of cortical ischemic stroke. However, VNS therapy has not been applied in a model of subcortical intracerebral hemorrhage (ICH). We hypothesized that VNS paired with rehabilitative training after ICH would enhance recovery of forelimb motor function beyond rehabilitative training alone. Rats were trained to perform an automated, quantitative measure of forelimb function. Once proficient, rats received an intrastriatal injection of bacterial collagenase to induce ICH. Rats then underwent VNS paired with rehabilitative training (VNS+Rehab; n=14) or rehabilitative training without VNS (Rehab; n=12). Rehabilitative training began ≥9 days after ICH and continued for 6 weeks. VNS paired with rehabilitative training significantly improved recovery of forelimb function when compared with rehabilitative training without VNS. The VNS+Rehab group displayed a 77% recov...
Cortical reorganization plays a significant role in recovery of function after injury of the cent... more Cortical reorganization plays a significant role in recovery of function after injury of the central nervous system. The neural mechanisms that underlie this reorganization may be the same as those normally responsible for skilled behaviors that accompany extended sensory experience and, if better understood, could provide a basis for further promoting recovery of function after injury. The work presented here extends studies of spontaneous cortical reorganization after spinal cord injury to the role of rehabilitative strategies on cortical reorganization. We use a complete spinal transection model to focus on cortical reorganization in response to serotonergic (5-HT) pharmacotherapy without any confounding effects from spared fibers left after partial lesions. 5-HT pharmacotherapy has previously been shown to improve behavioral outcome after SCI but the effect on cortical organization is unknown. After a complete spinal transection in the adult rat, 5-HT pharmacotherapy produced more reorganization in the sensorimotor cortex than would be expected by transection alone. This reorganization was dose dependent, extended into intact (forelimb) motor cortex, and, at least in the hindlimb sensorimotor cortex, followed a somatotopic arrangement. Animals with the greatest behavioral outcome showed the greatest extent of cortical reorganization suggesting that the reorganization is likely to be in response to both direct effects of 5-HT on cortical circuits and indirect effects in response to the behavioral improvement below the level of the lesion.
Uploads
Papers by Patrick Ganzer