Mussels belong to the phylum Mollusca, one of the largest and most diverse taxa in the animal kin... more Mussels belong to the phylum Mollusca, one of the largest and most diverse taxa in the animal kingdom. Despite their importance in aquaculture and in biology in general, genomic resources from mussels are still scarce. To broaden and increase the genomic knowledge in this family, we carried out a whole-genome sequencing study of the cosmopolitan Mediterranean mussel (Mytilus galloprovincialis). We sequenced its genome (32X depth of coverage) on the Illumina platform using three pair-end libraries with different insert sizes. The large number of contigs obtained pointed out a highly complex genome of 1.6 Gb where repeated elements seem to be widespread (~30% of the genome), a feature that is also shared with other marine molluscs. Notwithstanding the limitations of our genome sequencing, we were able to reconstruct two mitochondrial genomes and predict 10,891 putative genes. A comparative analysis with other molluscs revealed a gene enrichment of gene ontology categories related to m...
Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people wor... more Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people worldwide. This paper describes the genome sequence of Lactococcus lactis subsp. cremoris MG1363, the lactococcal strain most intensively studied throughout the world. The 2,529,478-bp genome contains 81 pseudogenes and encodes 2,436 proteins. Of the 530 unique proteins, 47 belong to the COG (clusters of orthologous groups) functional category “carbohydrate metabolism and transport,” by far the largest category of novel proteins in comparison with L. lactis subsp. lactis IL1403. Nearly one-fifth of the 71 insertion elements are concentrated in a specific 56-kb region. This integration hot-spot region carries genes that are typically associated with lactococcal plasmids and a repeat sequence specifically found on plasmids and in the “lateral gene transfer hot spot” in the genome of Streptococcus thermophilus. Although the parent of L. lactis MG1363 was used to demonstrate lysogeny in Lactococcus, L. lactis MG1363 carries four remnant/satellite phages and two apparently complete prophages. The availability of the L. lactis MG1363 genome sequence will reinforce its status as the prototype among lactic acid bacteria through facilitation of further applied and fundamental research.
We analyzed the tuf gene, encoding elongation factor Tu, from 33 strains representing 17 Lactobac... more We analyzed the tuf gene, encoding elongation factor Tu, from 33 strains representing 17 Lactobacillus species and 8 Bifidobacterium species. The tuf sequences were aligned and used to infer phylogenesis among species of lactobacilli and bifidobacteria. We demonstrated that the synonymous substitution affecting this gene renders elongation factor Tu a reliable molecular clock for investigating evolutionary distances of lactobacilli and bifidobacteria. In fact, the phylogeny generated by these tuf sequences is consistent with that derived from 16S rRNA analysis. The investigation of a multiple alignment of tuf sequences revealed regions conserved among strains belonging to the same species but distinct from those of other species. PCR primers complementary to these regions allowed species-specific identification of closely related species, such as Lactobacillus casei group members. These tuf gene-based assays developed in this study provide an alternative to present methods for the identification for lactic acid bacterial species. Since a variable number of tuf genes have been described for bacteria, the presence of multiple genes was examined. Southern analysis revealed one tuf gene in the genomes of lactobacilli and bifidobacteria, but the tuf gene was arranged differently in the genomes of these two taxa. Our results revealed that the tuf gene in bifidobacteria is flanked by the same gene constellation as the str operon, as originally reported for Escherichia coli. In contrast, bioinformatic and transcriptional analyses of the DNA region flanking the tuf gene in four Lactobacillus species indicated the same four-gene unit and suggested a novel tuf operon specific for the genus Lactobacillus.
Mussels belong to the phylum Mollusca, one of the largest and most diverse taxa in the animal kin... more Mussels belong to the phylum Mollusca, one of the largest and most diverse taxa in the animal kingdom. Despite their importance in aquaculture and in biology in general, genomic resources from mussels are still scarce. To broaden and increase the genomic knowledge in this family, we carried out a whole-genome sequencing study of the cosmopolitan Mediterranean mussel (Mytilus galloprovincialis). We sequenced its genome (32X depth of coverage) on the Illumina platform using three pair-end libraries with different insert sizes. The large number of contigs obtained pointed out a highly complex genome of 1.6 Gb where repeated elements seem to be widespread (~30% of the genome), a feature that is also shared with other marine molluscs. Notwithstanding the limitations of our genome sequencing, we were able to reconstruct two mitochondrial genomes and predict 10,891 putative genes. A comparative analysis with other molluscs revealed a gene enrichment of gene ontology categories related to m...
Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people wor... more Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people worldwide. This paper describes the genome sequence of Lactococcus lactis subsp. cremoris MG1363, the lactococcal strain most intensively studied throughout the world. The 2,529,478-bp genome contains 81 pseudogenes and encodes 2,436 proteins. Of the 530 unique proteins, 47 belong to the COG (clusters of orthologous groups) functional category “carbohydrate metabolism and transport,” by far the largest category of novel proteins in comparison with L. lactis subsp. lactis IL1403. Nearly one-fifth of the 71 insertion elements are concentrated in a specific 56-kb region. This integration hot-spot region carries genes that are typically associated with lactococcal plasmids and a repeat sequence specifically found on plasmids and in the “lateral gene transfer hot spot” in the genome of Streptococcus thermophilus. Although the parent of L. lactis MG1363 was used to demonstrate lysogeny in Lactococcus, L. lactis MG1363 carries four remnant/satellite phages and two apparently complete prophages. The availability of the L. lactis MG1363 genome sequence will reinforce its status as the prototype among lactic acid bacteria through facilitation of further applied and fundamental research.
We analyzed the tuf gene, encoding elongation factor Tu, from 33 strains representing 17 Lactobac... more We analyzed the tuf gene, encoding elongation factor Tu, from 33 strains representing 17 Lactobacillus species and 8 Bifidobacterium species. The tuf sequences were aligned and used to infer phylogenesis among species of lactobacilli and bifidobacteria. We demonstrated that the synonymous substitution affecting this gene renders elongation factor Tu a reliable molecular clock for investigating evolutionary distances of lactobacilli and bifidobacteria. In fact, the phylogeny generated by these tuf sequences is consistent with that derived from 16S rRNA analysis. The investigation of a multiple alignment of tuf sequences revealed regions conserved among strains belonging to the same species but distinct from those of other species. PCR primers complementary to these regions allowed species-specific identification of closely related species, such as Lactobacillus casei group members. These tuf gene-based assays developed in this study provide an alternative to present methods for the identification for lactic acid bacterial species. Since a variable number of tuf genes have been described for bacteria, the presence of multiple genes was examined. Southern analysis revealed one tuf gene in the genomes of lactobacilli and bifidobacteria, but the tuf gene was arranged differently in the genomes of these two taxa. Our results revealed that the tuf gene in bifidobacteria is flanked by the same gene constellation as the str operon, as originally reported for Escherichia coli. In contrast, bioinformatic and transcriptional analyses of the DNA region flanking the tuf gene in four Lactobacillus species indicated the same four-gene unit and suggested a novel tuf operon specific for the genus Lactobacillus.
Uploads
Papers by Carlos Canchaya