The mutational patterns of cancer genomes allow conclusions or generation of hypotheses as to wha... more The mutational patterns of cancer genomes allow conclusions or generation of hypotheses as to what mechanisms or environmental, dietary or occupational exposures might have created the mutations and therefore will have contributed to the formation of the cancer. The arguments for cancer causation are particularly convincing when epidemiological evidence can support the theory that a particular exposure is linked to the cancer and when the mutational process can be recapitulated in experimental systems. In this review, I will summarize recent evidence from cancer genome sequencing studies to exemplify how the environment can modulate tumor genomes. Mutation data from cancer genomes clearly implicate the ultraviolet B component of sunlight in melanoma skin cancers, tobacco carcinogen-induced DNA damage in lung cancers and aristolochic acid, a chemical compound found in certain herbal medicines, in urothelial carcinomas of exposed populations. However, large-scale sequencing is beginni...
Methods in molecular biology (Clifton, N.J.), 2006
There is a need to analyze the formation of DNA lesions in specific sequence contexts. The format... more There is a need to analyze the formation of DNA lesions in specific sequence contexts. The formation and repair of DNA damage at specific locations in the genome is modulated by the DNA sequence, by DNA methylation patterns, by the transcriptional status of the locus, and by chromatin proteins associated with the DNA. The only method currently available to allow a precise sequence mapping of DNA lesions in mammalian cells is the ligation-mediated polymerase chain reaction (LM-PCR). I describe the technical details of LM-PCR as exemplified by the mapping of DNA damage products in ultraviolet (UV) light-irradiated cells.
The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC... more The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutatio...
Loss of genetic material from chromosome 3p21.3 is one of the most common and earliest events in ... more Loss of genetic material from chromosome 3p21.3 is one of the most common and earliest events in the pathogenesis of lung cancer and many other solid tumors. The chromosomal area 3p21.3 is thought to harbor at least one important tumor suppressor gene, which, despite many years of investigation, has remained elusive. In our previous studies, we have identified and cloned a gene from the common homozygous deletion area at 3p21.3. The gene, named RASSF1A (Ras ASSociation domain Family 1A), has homology to a mammalian Ras effector. The RASSF1A gene is epigenetically inactivated in a large percentage of human lung cancers, in particular small cell carcinomas. A high frequency of methylation of RASSF1A is found also in breast cancers, renal cell carcinomas, ovarian, gastric and bladder cancers, and in neuroblastomas. The RASSF1A gene is a candidate for a tumor suppressor gene in 3p21.3.
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2006
UVB (280–320nm) and UVC (200–280nm) irradiation generate predominantly cyclobutane pyrimidine dim... more UVB (280–320nm) and UVC (200–280nm) irradiation generate predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine–thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase η (Pol η) dependent process. Pol η is a DNA
Proceedings of The National Academy of Sciences, 1990
The 5Ă¢Â² region of the gene encoding human X chromosome-linked phosphoglycerate kinase 1 (PGK1) is... more The 5Ă¢Â² region of the gene encoding human X chromosome-linked phosphoglycerate kinase 1 (PGK1) is a promoter-containing CpG island known to be methylated at 119 of 121 CpG dinucleotides in a 450-base-pair region on the inactive human X chromosome in the hamster-human cell line X8-6T2. Here the authors report the use of polymerase chain reaction-aided genomic sequencing to determine the
Changes in DNA methylation patterns are an important characteristic of human cancer including lun... more Changes in DNA methylation patterns are an important characteristic of human cancer including lung cancer. In particular, hypermethylation of CpG islands is a signature of malignant progression. Methylated CpG islands are promising diagnostic markers for the early detection of cancer. However, the full extent and sequence context of DNA hypermethylation in lung cancer has remained unknown. We have used the methylated CpG island recovery assay and high-resolution microarray analysis to find hypermethylated CpG islands in squamous cell carcinomas (SCC) and adenocarcinomas of the lung. Each tumor contained several hundred hypermethylated CpG islands. In an initial microarray screen, 36 CpG islands were methylated in five of five (=100%) of the SCC tumors tested and 52 CpG islands were methylated in at least 75% of the adenocarcinomas tested (n=8). Using sodium-bisulfite-based approaches, 12 CpG islands (associated with the BARHL2, EVX2, IRX2, MEIS1, MSX1, NR2E1, OC2, OSR1, OTX1, PAX6, TFAP2A, and ZNF577 genes) were confirmed to be methylated in 85% to 100% of the squamous cell carcinomas and 11 CpG islands (associated with the CHAD, DLX4, GRIK2, KCNG3, NR2E1, OSR1, OTX1, OTX2, PROX1, RUNX1, and VAX1 genes) were methylated in >80% of the adenocarcinomas. From the list of genes that were methylated in lung adenocarcinomas, we identified the gene FAT4 and found that this gene was methylated in 39% of the tumors. FAT4 is the closest mammalian homologue of the Drosophila tumor suppressor Fat which is an important component of the Hippo growth control pathway. Many of these newly discovered methylated CpG islands hold promise for becoming biomarkers for the early detection of lung cancer.
Mammalian X-chromosome inactivation is an excellent example of the faithful maintenance of a dete... more Mammalian X-chromosome inactivation is an excellent example of the faithful maintenance of a determined chromosomal state. As such, it may provide insight into the mechanisms for cell memory, defined as the faithful maintenance of a determined state in clonally derived progeny cells. We review here the aspects of X-chromosome inactivation that are relevant to cell memory and discuss the various molecular mechanisms that have been proposed to explain its occurrence, with emphasis on DNA methylation and a recently proposed mechanism that depends on the timing of replication.
Proceedings of the National Academy of Sciences, 1997
In the P53 tumor suppressor gene, a remarkably large number of somatic mutations are found at met... more In the P53 tumor suppressor gene, a remarkably large number of somatic mutations are found at methylated CpG dinucleotides. We have previously mapped the distribution of (+/-) anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy -7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) adducts along the human P53 gene [Denissenko, M. F., Pao, A., Tang, M.-s. & Pfeifer, G. P. (1996) Science 274, 430-432]. Strong and selective formation of adducts occurred at guanines in CpG sequences of codons 157, 248, and 273, which are the major mutational hot spots in lung cancer. Chromatin structure was not involved in preferential modification of these sites by BPDE. To investigate other possible mechanisms underlying the selectivity of BPDE binding, we have mapped the adducts in plasmid DNA containing genomic P53 sequences. The adduct profile obtained was different from that in genomic DNA. However, when cytosines at CpG sequences were converted to 5-methylcytosines by the CpG-specific methylase SssI and the DNA was subsequently treated with BPDE, adduct hot spots were created which were similar to those seen in genomic DNA where all CpGs are methylated. A strong positive effect of 5-methylcytosine on BPDE adduct formation at CpG sites was also documented with sequences of the PGK1 gene derived from an active or inactive human X chromosome and having differential methylation patterns. These results show that methylated CpG dinucleotides, in addition to being an endogenous promutagenic factor, may represent a preferential target for exogenous chemical carcinogens. The data open new avenues concerning the reasons that the majority of mutational hot spots in human genes are at CpGs.
Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1998
Cytosine residues at CpG dinucleotides can be methylated by endogenous methyltransferases in mamm... more Cytosine residues at CpG dinucleotides can be methylated by endogenous methyltransferases in mammalian cells. The resulting 5-methylcytosine base may undergo spontaneous deamination to form thymine causing G/C to A/T transition mutations. Methylated CpGs also can form preferential targets for environmental mutagens and carcinogens. The Big Blue(R) transgenic mouse has been used to investigate tissue and organ specificity of mutations and to deduce mutational mechanisms in a mammal in vivo. The transgenic mouse contains approximately 40 concatenated lambda-like shuttle vectors, each of which contains one copy of an Escherichia coli lacI gene as a mutational target. lacI mutations in lambda transgenic mice are characterized by a high frequency of spontaneous mutations targeted to CpG dinucleotides suggesting an important contribution from methylation-mediated events. To study the methylation status of CpGs in the lacI gene, we have mapped the distribution of 5-methylcytosines along the DNA-binding domain and flanking sequences of the lacI gene of transgenic mice. We analyzed genomic DNA from various tissues including thymus, liver, testis, and DNA derived from two thymic lymphomas. The mouse genomic DNAs and methylated and unmethylated control DNAs were chemically cleaved, then the positions of 5-methylcytosines were mapped by ligation-mediated PCR which can be used to distinguish methylated from unmethylated cytosines. Our data show that most CpG dinucleotides in the DNA binding domain of the lacI gene are methylated to a high extent (>98%) in all tissues tested; only a few sites are partially (70-90%) methylated. We conclude that tissue-specific methylation is unlikely to contribute significantly to tissue-specific mutational patterns, and that the occurrence of common mutation sites at specific CpGs in the lacI gene is not related to selective methylation of only these sequences. The data confirm previous suggestions that the high frequency of CpG mutations in lacI transgenes is related to the presence of 5-methylcytosine bases.
Protein-DNA interactions in mammalian cells can be analyzed at the nucleotide level of resolution... more Protein-DNA interactions in mammalian cells can be analyzed at the nucleotide level of resolution by genomic sequencing techniques. The most sensitive genomic sequencing method uses the ligation-mediated polymerase chain reaction (LMPCR) for signal amplification to detect the positions of DNA modifications or strand breaks. Various probing methods are compatible with LMPCR, but dimethyl sulfate footprinting has most commonly been used. Here, we have examined the suitability of ultraviolet (UV) light as an in vivo footprinting agent to detect a wide variety of protein-DNA contacts. The distribution of the two major types of UV-induced DNA photoproducts (cyclobutane pyrimidine dimers and (6-4) photo-products) has been examined along the promoter sequences of three human genes. A comparison of UV-irradiated naked DNA and UV-irradiated cells reveals differences in the UV damage spectrum for both types of photoproducts. These differences can be either decreases or dramatic increases of photoproduct frequency. At the promoter of the c-jun gene, these differences ("photofootprints") co-localize with binding sites for two AP-1-like transcription factors, a CCAAT box binding protein, an SP-1 sequence, an NF-jun sequence, a related to serum response factor (RSRF) binding site and a sequence bound by an unknown factor. In the promoter of the gene coding for proliferating cell nuclear antigen (PCNA), photofootprints were seen at two SP-1 like sequences and two CCAAT boxes. The c-fos promoter is characterized by photofootprints at the serum response element (SRE), at the adjacent binding site for ternary complex factor (TCF), at an AP-1 site and at a binding site for a growth factor inducible protein (SIF). Photofootprints may be signatures of specific transcription factors or families of related factors since we noticed that the photofootprints seen at several common factor binding sites were similar or identical when the same site was analyzed in different genes. Photofootprints were not seen at sequences distant from transcription factor binding sites. A comparison of our UV photofootprinting data with data from experiments using other probing strategies shows that UV light has the potential to reveal all protein-DNA interactions provided there is a dipyrimidine sequence on either DNA strand within a factor binding site. The simplicity of using this probing agent together with its specificity for detecting a large variety of different factors should make UV light a generally useful tool for in vivo footprinting studies.
The mutational specificity of UV-light is characterized by an abundance of C to T transition muta... more The mutational specificity of UV-light is characterized by an abundance of C to T transition mutations at dipyrimidines containing cytosine or 5-methylcytosine. A significant percentage of these mutations are CC to TT double transitions. Of the major types of UV-induced DNA lesions, the cis-syn cyclobutane pyrimidine dimers (CPDs) are thought to be the most mutagenic lesions, at least in mammalian cells. It has been proposed that the CPDs become mutagenic perhaps only after cytosine bases within these dimers deaminate to uracil and the resulting U-containing photolesions are correctly bypassed by DNA polymerases. In order to assess the significance of this proposed mutagenic mechanism, we have developed two methods to specifically measure deaminated CPDs in UV-irradiated human cells or DNA. The first method is based on enzymatic photoreversal of CPDs, followed by cleavage of the DNA with uracil DNA glycosylase, an AP lyase activity, and ligation-mediated PCR to map the resulting strand breaks. The second method, which can be used to detect double deamination events (CC to UU), is PCR amplification of photolyase-treated DNA using primers complemetary to the deaminated sequences. We have measured deamination events in the human p53 gene, which contains a large percentage of C to T transitions in skin cancers. The deamination reactions are specific for cytosine within CPDs, are negligible immediately after irradiation, and are time-dependent and DNA sequence context-dependent. Twenty four hours after irradiation of human fibroblasts with UVB light, between 10 and 60% of most CPD signals are converted to the deaminated form, depending on the sequence. Significant deamination occurs at skin cancer mutation sites in the p53 gene. Double deamination also occurs and this reaction can involve dimers containing 5-methylcytosine or cytosine. These double events are expected to occur more frequently in cells with a DNA repair defect because there is more time for deamination in unrepaired lesions. This may explain the relatively high frequency of CC to TT mutations in skin cancers from xeroderma pigmentosum patients. In summary, these novel detection techniques demonstrate that deamination of cytosine in pyrimidine dimers is a significant event that most likely contributes to the mutational specificity of UVB irradiation in human cells.
In the p53 gene of human sunlight-associated skin cancers, 35 % of the mutations involve trinucle... more In the p53 gene of human sunlight-associated skin cancers, 35 % of the mutations involve trinucleotide sequences with the rare base 5-methylcytosine (5'PymCG). In order to determine the involvement of 5-methylcytosine in sunlight-induced mutations, we have analyzed the cII transgene in mouse cells, a mutational target gene that we found is methylated at most CpG sequences. We report that the mutational spectra produced by irradiation with 254 nm UVC radiation and simulated sunlight, respectively, differ most dramatically by the much higher involvement of dipyrimidine structures containing 5-methylcytosine in the solar UV mutation spectrum (32 % versus 9 % of all mutations). A distinct mutational hotspot induced by simulated sunlight occurs at a sequence 5'TmCG and is associated with high levels of cis-syn cyclobutane pyrimidine dimer formation. A comparison of sunlight-induced mutational spectra of the cII and lacI transgenes, as well as the p53 gene in skin tumors, shows that 5-methylcytosine is involved in 25 to 40 % of all mutations in all three systems. The combined data make a strong case that cyclobutane pyrimidine dimers forming preferentially at dipyrimidine sequences with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells.
The mutational patterns of cancer genomes allow conclusions or generation of hypotheses as to wha... more The mutational patterns of cancer genomes allow conclusions or generation of hypotheses as to what mechanisms or environmental, dietary or occupational exposures might have created the mutations and therefore will have contributed to the formation of the cancer. The arguments for cancer causation are particularly convincing when epidemiological evidence can support the theory that a particular exposure is linked to the cancer and when the mutational process can be recapitulated in experimental systems. In this review, I will summarize recent evidence from cancer genome sequencing studies to exemplify how the environment can modulate tumor genomes. Mutation data from cancer genomes clearly implicate the ultraviolet B component of sunlight in melanoma skin cancers, tobacco carcinogen-induced DNA damage in lung cancers and aristolochic acid, a chemical compound found in certain herbal medicines, in urothelial carcinomas of exposed populations. However, large-scale sequencing is beginni...
Methods in molecular biology (Clifton, N.J.), 2006
There is a need to analyze the formation of DNA lesions in specific sequence contexts. The format... more There is a need to analyze the formation of DNA lesions in specific sequence contexts. The formation and repair of DNA damage at specific locations in the genome is modulated by the DNA sequence, by DNA methylation patterns, by the transcriptional status of the locus, and by chromatin proteins associated with the DNA. The only method currently available to allow a precise sequence mapping of DNA lesions in mammalian cells is the ligation-mediated polymerase chain reaction (LM-PCR). I describe the technical details of LM-PCR as exemplified by the mapping of DNA damage products in ultraviolet (UV) light-irradiated cells.
The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC... more The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutatio...
Loss of genetic material from chromosome 3p21.3 is one of the most common and earliest events in ... more Loss of genetic material from chromosome 3p21.3 is one of the most common and earliest events in the pathogenesis of lung cancer and many other solid tumors. The chromosomal area 3p21.3 is thought to harbor at least one important tumor suppressor gene, which, despite many years of investigation, has remained elusive. In our previous studies, we have identified and cloned a gene from the common homozygous deletion area at 3p21.3. The gene, named RASSF1A (Ras ASSociation domain Family 1A), has homology to a mammalian Ras effector. The RASSF1A gene is epigenetically inactivated in a large percentage of human lung cancers, in particular small cell carcinomas. A high frequency of methylation of RASSF1A is found also in breast cancers, renal cell carcinomas, ovarian, gastric and bladder cancers, and in neuroblastomas. The RASSF1A gene is a candidate for a tumor suppressor gene in 3p21.3.
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2006
UVB (280–320nm) and UVC (200–280nm) irradiation generate predominantly cyclobutane pyrimidine dim... more UVB (280–320nm) and UVC (200–280nm) irradiation generate predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine–thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase η (Pol η) dependent process. Pol η is a DNA
Proceedings of The National Academy of Sciences, 1990
The 5Ă¢Â² region of the gene encoding human X chromosome-linked phosphoglycerate kinase 1 (PGK1) is... more The 5Ă¢Â² region of the gene encoding human X chromosome-linked phosphoglycerate kinase 1 (PGK1) is a promoter-containing CpG island known to be methylated at 119 of 121 CpG dinucleotides in a 450-base-pair region on the inactive human X chromosome in the hamster-human cell line X8-6T2. Here the authors report the use of polymerase chain reaction-aided genomic sequencing to determine the
Changes in DNA methylation patterns are an important characteristic of human cancer including lun... more Changes in DNA methylation patterns are an important characteristic of human cancer including lung cancer. In particular, hypermethylation of CpG islands is a signature of malignant progression. Methylated CpG islands are promising diagnostic markers for the early detection of cancer. However, the full extent and sequence context of DNA hypermethylation in lung cancer has remained unknown. We have used the methylated CpG island recovery assay and high-resolution microarray analysis to find hypermethylated CpG islands in squamous cell carcinomas (SCC) and adenocarcinomas of the lung. Each tumor contained several hundred hypermethylated CpG islands. In an initial microarray screen, 36 CpG islands were methylated in five of five (=100%) of the SCC tumors tested and 52 CpG islands were methylated in at least 75% of the adenocarcinomas tested (n=8). Using sodium-bisulfite-based approaches, 12 CpG islands (associated with the BARHL2, EVX2, IRX2, MEIS1, MSX1, NR2E1, OC2, OSR1, OTX1, PAX6, TFAP2A, and ZNF577 genes) were confirmed to be methylated in 85% to 100% of the squamous cell carcinomas and 11 CpG islands (associated with the CHAD, DLX4, GRIK2, KCNG3, NR2E1, OSR1, OTX1, OTX2, PROX1, RUNX1, and VAX1 genes) were methylated in >80% of the adenocarcinomas. From the list of genes that were methylated in lung adenocarcinomas, we identified the gene FAT4 and found that this gene was methylated in 39% of the tumors. FAT4 is the closest mammalian homologue of the Drosophila tumor suppressor Fat which is an important component of the Hippo growth control pathway. Many of these newly discovered methylated CpG islands hold promise for becoming biomarkers for the early detection of lung cancer.
Mammalian X-chromosome inactivation is an excellent example of the faithful maintenance of a dete... more Mammalian X-chromosome inactivation is an excellent example of the faithful maintenance of a determined chromosomal state. As such, it may provide insight into the mechanisms for cell memory, defined as the faithful maintenance of a determined state in clonally derived progeny cells. We review here the aspects of X-chromosome inactivation that are relevant to cell memory and discuss the various molecular mechanisms that have been proposed to explain its occurrence, with emphasis on DNA methylation and a recently proposed mechanism that depends on the timing of replication.
Proceedings of the National Academy of Sciences, 1997
In the P53 tumor suppressor gene, a remarkably large number of somatic mutations are found at met... more In the P53 tumor suppressor gene, a remarkably large number of somatic mutations are found at methylated CpG dinucleotides. We have previously mapped the distribution of (+/-) anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy -7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) adducts along the human P53 gene [Denissenko, M. F., Pao, A., Tang, M.-s. & Pfeifer, G. P. (1996) Science 274, 430-432]. Strong and selective formation of adducts occurred at guanines in CpG sequences of codons 157, 248, and 273, which are the major mutational hot spots in lung cancer. Chromatin structure was not involved in preferential modification of these sites by BPDE. To investigate other possible mechanisms underlying the selectivity of BPDE binding, we have mapped the adducts in plasmid DNA containing genomic P53 sequences. The adduct profile obtained was different from that in genomic DNA. However, when cytosines at CpG sequences were converted to 5-methylcytosines by the CpG-specific methylase SssI and the DNA was subsequently treated with BPDE, adduct hot spots were created which were similar to those seen in genomic DNA where all CpGs are methylated. A strong positive effect of 5-methylcytosine on BPDE adduct formation at CpG sites was also documented with sequences of the PGK1 gene derived from an active or inactive human X chromosome and having differential methylation patterns. These results show that methylated CpG dinucleotides, in addition to being an endogenous promutagenic factor, may represent a preferential target for exogenous chemical carcinogens. The data open new avenues concerning the reasons that the majority of mutational hot spots in human genes are at CpGs.
Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1998
Cytosine residues at CpG dinucleotides can be methylated by endogenous methyltransferases in mamm... more Cytosine residues at CpG dinucleotides can be methylated by endogenous methyltransferases in mammalian cells. The resulting 5-methylcytosine base may undergo spontaneous deamination to form thymine causing G/C to A/T transition mutations. Methylated CpGs also can form preferential targets for environmental mutagens and carcinogens. The Big Blue(R) transgenic mouse has been used to investigate tissue and organ specificity of mutations and to deduce mutational mechanisms in a mammal in vivo. The transgenic mouse contains approximately 40 concatenated lambda-like shuttle vectors, each of which contains one copy of an Escherichia coli lacI gene as a mutational target. lacI mutations in lambda transgenic mice are characterized by a high frequency of spontaneous mutations targeted to CpG dinucleotides suggesting an important contribution from methylation-mediated events. To study the methylation status of CpGs in the lacI gene, we have mapped the distribution of 5-methylcytosines along the DNA-binding domain and flanking sequences of the lacI gene of transgenic mice. We analyzed genomic DNA from various tissues including thymus, liver, testis, and DNA derived from two thymic lymphomas. The mouse genomic DNAs and methylated and unmethylated control DNAs were chemically cleaved, then the positions of 5-methylcytosines were mapped by ligation-mediated PCR which can be used to distinguish methylated from unmethylated cytosines. Our data show that most CpG dinucleotides in the DNA binding domain of the lacI gene are methylated to a high extent (>98%) in all tissues tested; only a few sites are partially (70-90%) methylated. We conclude that tissue-specific methylation is unlikely to contribute significantly to tissue-specific mutational patterns, and that the occurrence of common mutation sites at specific CpGs in the lacI gene is not related to selective methylation of only these sequences. The data confirm previous suggestions that the high frequency of CpG mutations in lacI transgenes is related to the presence of 5-methylcytosine bases.
Protein-DNA interactions in mammalian cells can be analyzed at the nucleotide level of resolution... more Protein-DNA interactions in mammalian cells can be analyzed at the nucleotide level of resolution by genomic sequencing techniques. The most sensitive genomic sequencing method uses the ligation-mediated polymerase chain reaction (LMPCR) for signal amplification to detect the positions of DNA modifications or strand breaks. Various probing methods are compatible with LMPCR, but dimethyl sulfate footprinting has most commonly been used. Here, we have examined the suitability of ultraviolet (UV) light as an in vivo footprinting agent to detect a wide variety of protein-DNA contacts. The distribution of the two major types of UV-induced DNA photoproducts (cyclobutane pyrimidine dimers and (6-4) photo-products) has been examined along the promoter sequences of three human genes. A comparison of UV-irradiated naked DNA and UV-irradiated cells reveals differences in the UV damage spectrum for both types of photoproducts. These differences can be either decreases or dramatic increases of photoproduct frequency. At the promoter of the c-jun gene, these differences ("photofootprints") co-localize with binding sites for two AP-1-like transcription factors, a CCAAT box binding protein, an SP-1 sequence, an NF-jun sequence, a related to serum response factor (RSRF) binding site and a sequence bound by an unknown factor. In the promoter of the gene coding for proliferating cell nuclear antigen (PCNA), photofootprints were seen at two SP-1 like sequences and two CCAAT boxes. The c-fos promoter is characterized by photofootprints at the serum response element (SRE), at the adjacent binding site for ternary complex factor (TCF), at an AP-1 site and at a binding site for a growth factor inducible protein (SIF). Photofootprints may be signatures of specific transcription factors or families of related factors since we noticed that the photofootprints seen at several common factor binding sites were similar or identical when the same site was analyzed in different genes. Photofootprints were not seen at sequences distant from transcription factor binding sites. A comparison of our UV photofootprinting data with data from experiments using other probing strategies shows that UV light has the potential to reveal all protein-DNA interactions provided there is a dipyrimidine sequence on either DNA strand within a factor binding site. The simplicity of using this probing agent together with its specificity for detecting a large variety of different factors should make UV light a generally useful tool for in vivo footprinting studies.
The mutational specificity of UV-light is characterized by an abundance of C to T transition muta... more The mutational specificity of UV-light is characterized by an abundance of C to T transition mutations at dipyrimidines containing cytosine or 5-methylcytosine. A significant percentage of these mutations are CC to TT double transitions. Of the major types of UV-induced DNA lesions, the cis-syn cyclobutane pyrimidine dimers (CPDs) are thought to be the most mutagenic lesions, at least in mammalian cells. It has been proposed that the CPDs become mutagenic perhaps only after cytosine bases within these dimers deaminate to uracil and the resulting U-containing photolesions are correctly bypassed by DNA polymerases. In order to assess the significance of this proposed mutagenic mechanism, we have developed two methods to specifically measure deaminated CPDs in UV-irradiated human cells or DNA. The first method is based on enzymatic photoreversal of CPDs, followed by cleavage of the DNA with uracil DNA glycosylase, an AP lyase activity, and ligation-mediated PCR to map the resulting strand breaks. The second method, which can be used to detect double deamination events (CC to UU), is PCR amplification of photolyase-treated DNA using primers complemetary to the deaminated sequences. We have measured deamination events in the human p53 gene, which contains a large percentage of C to T transitions in skin cancers. The deamination reactions are specific for cytosine within CPDs, are negligible immediately after irradiation, and are time-dependent and DNA sequence context-dependent. Twenty four hours after irradiation of human fibroblasts with UVB light, between 10 and 60% of most CPD signals are converted to the deaminated form, depending on the sequence. Significant deamination occurs at skin cancer mutation sites in the p53 gene. Double deamination also occurs and this reaction can involve dimers containing 5-methylcytosine or cytosine. These double events are expected to occur more frequently in cells with a DNA repair defect because there is more time for deamination in unrepaired lesions. This may explain the relatively high frequency of CC to TT mutations in skin cancers from xeroderma pigmentosum patients. In summary, these novel detection techniques demonstrate that deamination of cytosine in pyrimidine dimers is a significant event that most likely contributes to the mutational specificity of UVB irradiation in human cells.
In the p53 gene of human sunlight-associated skin cancers, 35 % of the mutations involve trinucle... more In the p53 gene of human sunlight-associated skin cancers, 35 % of the mutations involve trinucleotide sequences with the rare base 5-methylcytosine (5'PymCG). In order to determine the involvement of 5-methylcytosine in sunlight-induced mutations, we have analyzed the cII transgene in mouse cells, a mutational target gene that we found is methylated at most CpG sequences. We report that the mutational spectra produced by irradiation with 254 nm UVC radiation and simulated sunlight, respectively, differ most dramatically by the much higher involvement of dipyrimidine structures containing 5-methylcytosine in the solar UV mutation spectrum (32 % versus 9 % of all mutations). A distinct mutational hotspot induced by simulated sunlight occurs at a sequence 5'TmCG and is associated with high levels of cis-syn cyclobutane pyrimidine dimer formation. A comparison of sunlight-induced mutational spectra of the cII and lacI transgenes, as well as the p53 gene in skin tumors, shows that 5-methylcytosine is involved in 25 to 40 % of all mutations in all three systems. The combined data make a strong case that cyclobutane pyrimidine dimers forming preferentially at dipyrimidine sequences with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells.
Uploads
Papers by Gerd P Pfeifer