Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Morphometric evolution of the domestic triad, in western Gallia Narbonensis (southern France, Languedoc), between the 2nd c.BC and the 4th c.AD: Preliminary and critical use of log size index for diachronic analysis

Quaternary International, 2023
...Read more
HAL Id: hal-03959609 https://hal.science/hal-03959609 Submitted on 27 Jan 2023 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entifc research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la difusion de documents scientifques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Morphometric evolution of the domestic triad, in western Gallia Narbonensis (southern France, Languedoc), between the 2nd c.BC and the 4th c.AD: Preliminary and critical use of log size index for diachronic analysis Marine Jeanjean, Cyprien Mureau, Vianney Forest, Allowen Evin To cite this version: Marine Jeanjean, Cyprien Mureau, Vianney Forest, Allowen Evin. Morphometric evolution of the domestic triad, in western Gallia Narbonensis (southern France, Languedoc), between the 2nd c.BC and the 4th c.AD: Preliminary and critical use of log size index for diachronic analysis. Quaternary International, 2023, ฀10.1016/j.quaint.2022.07.001฀. ฀hal-03959609฀
https://doi.org/10.1016/j.quaint.2022.07.001 Published in Quaternary International Morphometric evolution of the domestic triad, in western Gallia Narbonensis (southern France, Languedoc) , between the 2nd c.BC and the 4th c.AD : Preliminary and critical use of log size index for diachronic analysis Marine Jeanjean a,1 , Cyprien Mureau a,1 , Vianney Forest b , Allowen Evin a,* a Institut des Sciences de lEvolution Montpellier, Université Montpellier, CNRS, IRD, EPHE. 2 Place Eugène Bataillon, 34095 Montpellier Cedex 05, France b INRAP Méditerranée, Nîmes, UMR 5608-TRACES, Toulouse, France 1 Contributed equally to this study. * Corresponding author. Keywords: Archaeozoology; Antiquity; Biometry; LSI; Animal husbandry ABSTRACT In bioarchaeology, the biometry of archaeozoological remains is an important component of studies on domestic species and size has been used for multiple purposes from identifying domestication, to track environmental changes or evolution of husbandry practices. The establishment of the Roman Empire has been accompanied by social, political and economic transformations that also reflect in farming practices and animal husbandry. In southern France, biometric variation has already been partially perceived during Roman times, particularly for cattle, but lack chronological accuracy and statistical validation. This paper presents a diachronic analysis of linear measurements of post-cranial bones belonging to the domestic triad (sheep, goat, cattle and suids) in western Gallia Narbonensis (France), between the Roman conquest and Late Antiquity, i.e. from 200 BCE to 400 AD. Biometric data from 64 archaeological sites, excavated and studied over more than 30 years of preventive archaeology, were analysed using a Log Size Index (LSI) approach using time as a continuous variable. The analysis of 5533 measurements first analysed per bone and variable, then separating length, breadth and depth dimensions, revealed different trends, highly influenced by the number of measurements, reflecting allometric differences but also cases of asynchronous evolution. However, these allometries within species are small when compared to interspecies differences. Overall, the size of the four taxa increased from the 2nd century BC to the 2nd century AD. Cattle and pig sizes then decreased from the 2nd century AD and only from the 4th century onwards for goats, while sheep size tends to increase during the 3rd-4th centuries. If the Roman conquest influences the size of the domestic animals, this does not affect the four species in the same way. This potentially reflects differentiated agropastoral strategies for each of the species in the western part of Gallia Narbonensis during the Roman period. This study, which provides a diachronic and cross-species study framework, should be seen as a first step for a more in-depth understanding of micro-regional and socioeconomic variation in domestic species morphologies.
Morphometric evolution of the domestic triad, in western Gallia Narbonensis (southern France, Languedoc), between the 2nd c.BC and the 4th c.AD: Preliminary and critical use of log size index for diachronic analysis Marine Jeanjean, Cyprien Mureau, Vianney Forest, Allowen Evin To cite this version: Marine Jeanjean, Cyprien Mureau, Vianney Forest, Allowen Evin. Morphometric evolution of the domestic triad, in western Gallia Narbonensis (southern France, Languedoc), between the 2nd c.BC and the 4th c.AD: Preliminary and critical use of log size index for diachronic analysis. Quaternary International, 2023, ฀10.1016/j.quaint.2022.07.001฀. ฀hal-03959609฀ HAL Id: hal-03959609 https://hal.science/hal-03959609 Submitted on 27 Jan 2023 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. https://doi.org/10.1016/j.quaint.2022.07.001 Published in Quaternary International Morphometric evolution of the domestic triad, in western Gallia Narbonensis (southern France, Languedoc), between the 2nd c.BC and the 4th c.AD : Preliminary and critical use of log size index for diachronic analysis Marine Jeanjeana,1, Cyprien Mureaua,1, Vianney Forestb, Allowen Evina,* a Institut des Sciences de l’Evolution – Montpellier, Université Montpellier, CNRS, IRD, EPHE. 2 Place Eugène Bataillon, 34095 Montpellier Cedex 05, France b INRAP Méditerranée, Nîmes, UMR 5608-TRACES, Toulouse, France 1 Contributed equally to this study. * Corresponding author. Keywords: Archaeozoology; Antiquity; Biometry; LSI; Animal husbandry ABSTRACT In bioarchaeology, the biometry of archaeozoological remains is an important component of studies on domestic species and size has been used for multiple purposes from identifying domestication, to track environmental changes or evolution of husbandry practices. The establishment of the Roman Empire has been accompanied by social, political and economic transformations that also reflect in farming practices and animal husbandry. In southern France, biometric variation has already been partially perceived during Roman times, particularly for cattle, but lack chronological accuracy and statistical validation. This paper presents a diachronic analysis of linear measurements of post-cranial bones belonging to the domestic triad (sheep, goat, cattle and suids) in western Gallia Narbonensis (France), between the Roman conquest and Late Antiquity, i.e. from 200 BCE to 400 AD. Biometric data from 64 archaeological sites, excavated and studied over more than 30 years of preventive archaeology, were analysed using a Log Size Index (LSI) approach using time as a continuous variable. The analysis of 5533 measurements first analysed per bone and variable, then separating length, breadth and depth dimensions, revealed different trends, highly influenced by the number of measurements, reflecting allometric differences but also cases of asynchronous evolution. However, these allometries within species are small when compared to interspecies differences. Overall, the size of the four taxa increased from the 2nd century BC to the 2nd century AD. Cattle and pig sizes then decreased from the 2nd century AD and only from the 4th century onwards for goats, while sheep size tends to increase during the 3rd-4th centuries. If the Roman conquest influences the size of the domestic animals, this does not affect the four species in the same way. This potentially reflects differentiated agropastoral strategies for each of the species in the western part of Gallia Narbonensis during the Roman period. This study, which provides a diachronic and cross-species study framework, should be seen as a first step for a more in-depth understanding of micro-regional and socioeconomic variation in domestic species morphologies. 1. INTRODUCTION In domestic mammals, changes in bone measurements, and more generally in body sizes, have been used as marker of domestication (e.g. Uerpmann, 1979), environmental changes (e.g. Davis, 1981; Gaughan et al., 2009; Savolainen et al., 2013; Mccain and King, 2014; Pacifici et al., 2017; Elayadeth-Meethal et al., 2018) or husbandry changes (e.g. Albarella et al., 2006a; Grau-Sologestoa, 2015; Frémondeau et al., 2017; Robin and Clavel, 2018; Trentacoste et al., 2018, 2021; Nieto- Espinet et al., 2020). From a broad perspective, early analyses of biometric data of domestic animal bones revealed a general trend of size decrease from the Neolithic to the end of the Iron Age throughout Europe (Matolcsi, 1970; Bokonyi, 1974; Altuna, 1980; Méniel, 1984; Vigne, 1988; Audoin- Rouzeau, 1991; Riedel, 1994; Valenzuela-Lamas and Albarella, 2017), followed by a size increase during the Roman period (Boessneck, 1971; Bokonyi, 1974; Ijzereef, 1981; Méniel, 1984; Audoin-Rouzeau, 1991; Peters, 1998). More recent analyses revealed differences between cultural regions (e.g. Frémondeau et al., 2017; Duval and Clavel, 2018; Trentacoste et al., 2018) calling for local analysis of animal size evolution through time. In Gaul, i.e. a region first described by the Romans and covering present territories of France, Luxembourg, Belgium, and parts of Switzerland, Northern Italy, the Netherlands, and Germany, the size increase of domestic species, especially cattle and pigs, observed during the Roman period. This trend was considered as a direct consequence of the Roman conquest of the Galliae Belgica, Lugdunensis and Aquitania in 52 BCE, and then of the remodelling of their agro-pastoral economies during the first decades of the Roman Empire (Lepetz, 1996b; Méniel, 1996; Audoin-Rouzeau, 1998). Several criteria have been evoked to explain this increase in bone size: the importation of large animals from Italy (Yvinec, 1983; Krausz, 1985; Méniel, 1990, 1992, 2014; Benecke, 2001; Gaeng et al., 2019), the changes in pastoral practices (e.g. Lepetz, 1996b) or new environmental characteristics (Lepetz and Yvinec, 1998; Lepetz and Matterne, 2003; MacKinnon, 2010; Duval et al., 2015). In southern France, bones of cattle and caprines reached some of their smallest dimensions ever recorded during the second Iron Age i.e., 5th to 2nd c. BC (Forest, 2015). However, cattle with a “very high” wither height (greater than 1.35 m) did not appear synchronously with the Roman conquest of Gallia Narbonensis, in 121 BCE, but well after, during the middle of the 1st c. AD (Columeau, 2002; Forest and Rodet- Belarbi, 2002). On the other hand, in the northern provinces of the Italian peninsula the appearance of large cattle occurred from the 1st c. BC (MacKinnon, 2010; Kron, 2014), i.e. at the same time as in northern France (Lepetz, 1996a; Cambou, 2009; Foucras, 2010; Lepetz and Zech- Matterne, 2017; Duval and Clavel, 2018). This would imply a contemporary appearance of large cattle in several territories before, and therefore probably independently of, the expansion of the Roman Empire. Moreover, this increase in cattle size continues in Italy until Late Antiquity (MacKinnon, 2004), as in Narbonese Gaul (Columeau, 2002; Forest, 2008), Northern Gaul and Germanies (Lepetz, 1996b; Duval et al., 2012; Pigiere, 2017) or in England (Maltby, 1981; Dobney, 2001; Albarella, 2007; Rizzetto et al., 2017). The fact that a similar progressive dynamic is observed on a large geographical scale does not exclude a movement of large Roman animals, which appeared as early as the 4th c. BC in southern Italy (Baker, 2000). However, it tends to favour the hypothesis that local populations evolved more slowly than would have been expected to have resulted from a massive import of large Italian cattle. The Log Size Index (LSI) approach has helped reinvigorate interest in the size evolution of the domestic animals, and is now a standard in zooarchaeology (e.g. Uerpmann and Uerpmann, 1994; Davis, 1996; Meadow, 1999; Baudry, 2012; Duval et al., 2015; Robin and Clavel, 2018), even if the approach has been criticized (e.g. Wolfhagen, 2020). LSI techniques have been developed to address sample size issues by artificially increasing the number of measurements that can be analysed together (e.g. Weinstock, 2002; Albarella et al., 2006b; Sykes et al., 2011; Arbuckle et al., 2014, 2016; Grau-Sologestoa et al., 2021; Schmolcke and Groβ, 2021). This method, originally described by Simpson (Simpson, 1941; Simpson et al., 1960) and later developed by Meadow (1999), consists on a normalisation of bone measurements of interest using a reference. This reference could correspond either to the measurements of a single individual (e.g. Zeder, 2008; Duval et al., 2012; Arbuckle et al., 2014; Zeder and Lemoine, 2020a, 2020b), or mean measurements of several specimens (e.g. Degerbol and Fredskild, 1970; Payne and Bull, 1988; Clutton-Brock et al., 1990; Uerpmann and Uerpmann, 1994; Davis, 1996, 2000; Hongo and Meadow, 2000; Steppan, 2001; Weinstock, 2002; Johnstone and Albarella, 2002; Albarella and Payne, 2005; Albarella et al., 2006a; 2009; MacKinnon, 2010; Sykes et al., 2011; Telldahl et al., 2012; Valenzuela et al., 2013; Manin et al., 2016; Helmer and Gourichon, 2017; Robin and Clavel, 2018; Nieto-Espinet et al., 2021). The LSI method is based on the assumption of isometric variation between the measurements, i.e. all variables vary in a similar manner (Albarella, 2002; Albarella et al., 2006a; Wolfhagen, 2020; Zeder and Lemoine, 2020a). However, it is known that this is not always the case as bone lengths have been shown to be more related to the wither height of the animal, whereas bone breadths and depths correlate more with corpulence (Uerpmann, 1984; Guintard, 1996; Meadow, 1999; O'Connor and O'Connor, 2008). Accordingly, in order to mitigate the effect of potential allometries on LSI values, measurements of length, breadth and sometimes depth dimensions of the bones are sometimes, but not systematically, studied separately (e.g. Duval et al., 2012; Trentacoste et al., 2018; Trentacoste, 2020; Nieto-Espinet et al., 2020, 2021; Ameen et al., 2021; Salvagno et al., 2021; Wright, 2021). In Gaul, the LSI-length of cattle and pigs starts to increase at the end of the 3rd c. BC and this size increase intensifies during the 1st c. BC for cattle (Frémondeau et al., 2017; Duval and Clavel, 2018; Duval et al., 2018). A similar change has been noted in northern Italy for cattle (De Grossi Mazzorin and Minniti, 2017; Valenzuela-Lamas and Albarella, 2017; Trentacoste et al., 2018). In contrast, for pigs, the LSI-length tends to decrease between the 8th c. BC and the Roman period, when LSI-breadth remains constant throughout the period (Trentacoste et al., 2021). Finally, although wither height analyses indicated a gain in size for sheep and goats during the Roman period in Gaul (Lepetz, 1996b), this increase appears, at the same time, very limited in Italy and more visible for sheep on the LSI-breadth than on the LSI-length (Trentacoste et al., 2018, 2021). All these results question the hypothesis of a sudden increase in size of domestic animals in Gaul through the importation of Italian herds, but also that of a transmission of Roman know-how during the Roman conquests of the Gallia Narbonensis in 121 BCE and in the northern Gaul in 52 BCE. While time is often divided into chrono-cultural phases (e.g. Albarella et al., 2008; Colominas and Sana, 2009; Grau-Sologestoa, 2015; Colominas, 2017; Groot, 2017; Pigiere, 2017; Rizzetto et al., 2017; Valenzuela-Lamas and Albarella, 2017; Duval and Clavel, 2018; Robin and Clavel, 2018), some studies have evidenced the possibility of using time as a continuous variable. In such cases, the mean time of occupation of chrono-cultural phases or sites are often used, even if the archaeological records often allow a more detailed resolution, at the scale of the stratigraphic unit (Arbuckle et al., 2014, 2016; Frémondeau et al., 2017; Duval et al., 2018). In our study area, a particularly large amount of archaeozoological studies has been carried out by the many specialists working in preventive archaeology and published through excavation reports which, as grey literature, are yet not widely integrated into academic research. This long-term work has resulted in a particularly large body of raw data and a detailed understanding of the archaeological occupations at the site level. In this context, this study aims, through a critical use of the LSI for diachronic analysis, using time as a continuous variable and a larger dataset than those studied before, to provide a more detailed synthesis on metric change in the domestic triad, i.e. caprines (goat & sheep), cattle and suids, in western Narbonese Gaul between the 2nd century BC and the 4th century AD. For this purpose, we used LSI-values analysed first for each variable independently, then pooled by length, breadth and depth dimensions before studying the overall diachronic trends of the four species. 2. MATERIALS This study focuses on 64 archaeological assemblages located in the south of France, in the Gallia Narbonensis region corresponding to the modern Languedoc (Fig. 1, SI table 1). Our study focuses on the time period ranging from 200 BCE to 400 AD and includes assemblages for which the mean of the earliest (terminus post quem, TPQ) and latest (terminus ante quem, TAQ) dates fall within the defined period. The chronological data were recorded according to existing archaeological reports (SI table 1). All the faunal remains analysed here were studied by a single specialist, Vianney Forest, who is also the only person to have carried out the biometric measurements (SI table 1). This is to avoid any interoperator bias, also called ʻpersonal equationʼ (Sumner, 1927; Jewell and Fullagar, 1966; Yablokov, 1975). All data were collected in the context of preventive archaeology over the last 30 years, first by AFAN - 'Association pour les Fouilles Archéologiques Nationales' and then INRAP -'French Institute for Preventive Archaeological Research'. All raw measurements are available in the excavation reports of the corresponding archaeological sites (SI table 1). Wild boars were not distinguished from domestic pigs, and aurochs seem to have disappeared from the Languedoc between the Final Bronze Age and the beginning of the Iron Age (Forest and Cheylan, 2015). The distinction of sheep and goat bones was done using published macroscopic criteria (Cornevin and Lesbre, 1891; Boessneck et al., 1964; Prummel and Frisch, 1986; Helmer and Rocheteau, 1994) and personal expertise. The biometric measurements were acquired following the von den Driesch standards (von den Driesch, 1976) with new measurements (SI Fig. 1). The analyses focus on bones of the appendicular skeleton of adult sheep, goats, suids and cattle. Only measurements with a minimum of two values were retained for the analyses. Infant and juvenile specimens were excluded. In contrast, bones which were still unfused, or incomplete for which it was not possible to establish the fusing stage, but showing apparent definitive ossification, were retained. Due to the lack of knowledge on laterality and rank, phalanges and unidentified suids metapodials were excluded from the corpus. The compilation of all biometric data includes a total of 5533 measurements (SI table 1; SI table 2). Fig. 1. Location of the archaeological assemblages studied through time, from the 2nd century BC to the 4th century AD. Information on the sites, identified by the numbers, can be found in S1 Table 1. The grey lines represent the current borders of French departments. 3. METHODS The log size index (LSI) is obtained by calculating the difference between the decimal logarithm of each measurement from the archaeological material (x) and the corresponding measurement of a reference (y) (Simpson, 1941; Meadow, 1999). The formula can be expressed as follows: LSI = Log (x/y) = Log (x) - Log (y). This is actually a scaling technique for the size index (Meadow, 1981, 1999). As reference population, we used the average of each variable measured in the studied dataset (SI table 3). Thus, larger specimens than average will have positive values, while smaller specimens will have negative values. It should be noted that the size measurement expressed by LSI does not correspond to the body height classically interpreted in archaeozoology, as it is based on measurements taken in many different directions. Each measurement is dated by the mean of the possible time range of occupation, corresponding to the mean of the TPQ and TAQ of its stratigraphic unit. All analyses were performed in R (R Core Team, 2021), and LSI calculations are done with the zoolog package (Pozo et al., 2022). Traditionally, LSI values obtained from various variables are compared using e.g. t-test or Mann-Whitney test to ensure their homogeneity and detect allometries, i.e. when different variables provide different information (e.g. Albarella et al., 2009; Duval et al., 2012; Duval and Clavel, 2018; Trentacoste et al., 2018, 2021). When LSI values are studied diachronically, with time being analysed as a continuous variable, the different variables are usually not compared to each other (e.g. Arbuckle et al., 2014, 2016; Duval et al., 2018). Here, changes in the LSI values through time were assessed by a smoothing method based on a local polynomial regression fitting (function loess of the R package ʻstatsʼ (Cleveland et al., 1992)). A 90% confidence interval was added to the regression curve. Non-overlapping confidence intervals of two curves indicate significant differences. Conversely, an increase or decrease in LSI values through time was considered significant only when the confidence intervals did not overlap. The evolution of the LSI values through time was explored between 200 AD and 400 BCE and visualised as a biplot with time represented along the x-axis, and LSI values along the y-axis. In order to test for allometric differences between bones and between variables of each bone as already detected by previous studies (e.g. Zeder and Lemoine, 2020a), LSI values were first analysed separately for each variable. Then the variables were divided and analysed by dimension separating the length, breadth or depth measurements following Duval (2015) (SI table 4) and as recommended by different authors (Uerpmann and Uerpmann, 1994; Davis, 1996; Meadow, 1999; Baudry, 2012; Duval, 2015; Robin and Clavel, 2018). After these preliminary analyses, ensuring the homogeneity of the variables, all LSI values were pooled by taxa and visualised jointly. In order to apprehend the allometric bias in LSI analysis, and thus to illustrate their potential over interpretation, we explored the variation of LSI values for archaeological specimens from the dataset, represented by multiple bones. Our dataset includes 23 skeletons from 15 sites attributed to single specimens. The range of their LSI values was calculated as the difference between the minimal and maximal of all their LSI values. 4. RESULTS A total of 5533 measurements were analysed corresponding to 1950 measurements of cattle, 2197 of suids, 1113 of sheep and 273 of goat. 4.1. LSI per bone Overall, for each taxon and each bone, the LSI values of the various variables tend to overlap (Fig. 2), although some differences exist and not all bones show the same pattern over time. In general, the number of measurements is smaller at the extremes of the chronological period (SI Fig. 2) as evidenced by larger confidence intervals. For cattle (Fig. 2A), the scapula shows a different pattern compared to the other bones, with a similar bell shape trend characterized by an increase of LSI values up to a point where the measurements decrease. The SLC reaches its maximum around 200 AD, nearly two hundred years later than the variables BG and GLP. The metacarpal, the talus and the metatarsal have all their variables largely overlapping and show a main trend of increase in LSI values until a plateau. The plateau is reached at different times depending on the bone. The talus shows a maximum in LSI values around the middle of the 2nd c. AD, as in the case of metatarsal Bd. For the other variables of the metatarsal, the maximum appeared earlier, at the end of the 1st c. AD. The trend of the metacarpal is less clear with a maximum reached at the turn of our era for the GL variable, during the 2nd c. AD for the Bp and the Bd, while the SD shows a constant increase and does not reach a plateau. For suids, bones show relatively different trends in LSI values through time. On the one hand, variables of the humerus and SLC of the scapula increase until the beginning of the 2nd c. AD, followed by a plateau. On the other hand, variables of the talus only increase during the 1st c. BC and no variation can be observed for the ulna until the 2nd c. AD. The scarcity of measurements makes interpretations of the trends at the end of the period difficult, but only SD of the humerus decreases significatively (Fig. 2B). Fig. 2. Evolution through time (200 BCE to 400 AD) of the Log Size Index (LSI) values separated per bone and variables and for each taxon separately (A = Cattle, B = Suids and C = Sheep). Only the four bones with the largest number of measurements are presented (all others are shown in SI Fig. 2). Only the variables with at least 30 measurements are presented. Goats were not analysed due to the small sample size per variable. Each point corresponds to a LSI value plot in y against time in x. The sample size per bone (n = ) is written in brackets. Abbreviations are those of von den Driesch (1976). For sheep, the variables of each bone largely overlap (Fig. 2C). The talus and the tibia seem to show a similar, but insignificant, increase of LSI values though time. The scapula, represented by less measurements, and the metatarsal appear stable over time. As a whole, this approach shows a relatively homogeneous evolution between variables of a bone for each taxon and, frequently, different patterns between the bones studied. Moreover, the trends of certain variables seem to be influenced by a limited number of measurements, which calls for great caution in the interpretations. 4.2. Breath, depth, and length Variables were then combined according to the dimension they represent: breadth, depth or length. For cattle, the analysis of the three dimensions revealed different patterns through time. For breadth all variables largely overlap although small but significant differences can be noted. For example, the scapula shows higher values than femur, talus and naviculocuboid during the first century BC. The scapula also shows higher than metacarpus during the first century AD, when the talus shows lower values than humerus, radius, femur and tibia. Finally, talus and metapods show higher values than radius during the third c. AD. For depth the talus and calcaneus show opposite trends to the ulna. A difference is also observed for the length of the metapodials, reaching their maximum during the 1st c. AD, while the talus reaches it at the beginning of the 2nd c. AD. Altogether, the three dimensions of cattle show a relatively similar pattern with a maximum around the turn of the 2nd c. AD. From there, and until the end of the 4th c. AD, LSI-breadth stagnates while LSI depth and length decrease (Fig. 3). Depth values appear smaller than breadth and length from the 1st c. BC to the 1st c. AD, and again smaller than breadth during the 4th c. AD. For the three dimensions of suids, the variables largely overlap and show little variation through time (Fig. 3). LSI-depth increase slightly until the middle of the 2nd c. AD in two steps, with a plateau during the 1st c. AD. LSI-breath and length reach their maximum during the 2nd c. AD. Then, LSI-depth and length seem to stagnate, while LSI-breadth decreases until the end of the 4th c. AD. For goat, only breadth variables of the radius and metacarpal were represented by enough measurements to be visualised, though, due to their relatively small number, interpretations should be made with caution. When the variables are pooled, the three dimensions largely overlap. For sheep, curves of the three dimensions largely overlap and show a similar evolution through time with little variation. Fig. 3. Log Size Index evolution by taxa and dimension between 200 BCE and 400 AD. Dimensions of each variable were attributed following Duval (2015) (SI Table 4). Only the bones with at least 30 measurements per dimension are presented by dimension. For goat, only breadth measurements were numerous enough to be represented. For the total representation, all variables with more than two measurements were included. Each point corresponds to a LSI value plot in y against time in x. The sample sizes follow “n = “. 4.3. Overall evolution of the species through time All LSI values were then pooled to compare changes between the four species (Fig. 4). Cattle is the species showing the greatest variation in LSI values through time. Their size is at its lowest at the beginning of the period, then reaches a maximum in the early 2nd c. AD, followed by a decrease until the beginning of the 4th c. AD. Suids size also increases until the turn of the 2nd c. AD, but in two stages, during the 1st c. BC and more briefly in the first half of the 2nd c. AD, separated by a stagnation phase throughout the 1st c. AD. Then, suids size remains stable during the 2nd c. AD before decreasing until the end of the period. Sheep and goat change in a relatively similar manner with some differences. Goat size increases from the beginning of the 1st c. BC (not enough data were available before this date) to the second half of the 1st c. AD, followed by a plateau until at least the end of the 3rd c. AD (the confidence intervals overlap over time), potentially followed by a size decrease, evidenced by only few measurements to reach a size similar to those observed at the beginning of the period. Sheep also show their minimal size at the beginning of the studied period, which increases until the middle of the 1st c. AD up to a plateau with no change in size until the beginning of the 3rd c. AD, before increasing again to reach their largest size at the end of the study period. Fig. 4. Log Size index evolution for cattle, suids, goat and sheep between 200 BCE and 400 AD. All variables measured on the appendicular skeleton with more than 2 measurements were included. Each point corresponds to a LSI value plot in y against time in x. The sample size per species (n = ) is written in brackets. 4.4. Individual variation of LSI values LSI values were obtained from bone assemblages corresponding to 23 single individuals (Fig. 5). Intraspecimen LSI variation appears important with regards to the variation of species over time (Fig. 5A). The LSI range spread between 0.07 and 0.26 for cattle, 0.11 and 0.31 for suids, and 0.05 and 0.10 for sheep (Fig. 5B). For cattle and suids, the LSI range per specimen does not vary with the number of measurements available (corr = 0.16756, t = 0.61283, df = 13, p-value = 0.5506 for cattle, corr = 0.46953, t = 0.92112, df = 3, p-value = 0.4249 for suids) or time (mean TPQ/TAQ) (corr = −0.40624, t = −1.603, df = 13, p-value = 0.133 for cattle, corr = −0.54839, t = −1.1359, df = 3, p-value = 0.3385 for suids). Due to small number of bone assemblages for sheep (n = 2), correlation tests were not performed for this species. Fig. 5. Intra-specimen LSI variation. A. Visualization of intra-specimen Log Size Index (LSI) variation compared to the diachronic evolution of the species. Each dot represents a LSI value and are coloured by species. Values belonging to single specimens are aligned in x. The curves are those obtained in Fig. 4 (i.e. all values used for their computation are not represented). B. Ranges of LSI values calculated from the remains of 23 individuals separated by taxon. The size of the dots represents the number (Nb.) of available measurements and the colour reflects time. Data available in SI table 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 5. DISCUSSION Overall, the results appeared highly influenced by the number of measurements per variable. In some instances, non-overlapping confidence intervals, that should be interpreted as significant differences between variables, were in fact based on too little data to reach definitive conclusions. Differences between variables or between dimensions, i.e. allometries, exist and should be carefully inspected before making widespread use of Log Size Index approaches when studying a specific species. However, those allometries appeared low compared to the long-term diachronic variation and the inter-species differences. 5.1. Choice of dataset and critical use of the LSI for diachronic analysis By using measurements from a single operator, we avoided potential bias linked to inter-operator measurement error known to be potentially important for biometric data (Yezerinac et al., 1992; Evin et al., 2020). Surprisingly, the existence of differences between operators does not seem to be considered in current syntheses based on LSI approaches, and may require further exploration. Besides, while in our study all the bones attributed to adults were measured, even if they were incomplete or unfused, this may vary upon operator. For example, while von den Driesch (1976) reference measurements advocate measurement of only “full grown animals”, some authors only measure fully fused elements (e.g. Duval and Clavel, 2018), fused elements (e.g. Albarella et al., 2009) or a set of fusing and fused elements (e.g. Albarella and Payne, 2005; Albarella et al., 2008). Thus, the inclusion of younger specimens by some operators may result in an increase in the number of small LSI values. In this study, we demonstrate important variation in LSI values within single skeletons. Including skeletal groups in an analysis has the advantage of providing a large number of measurements, and highlighting potential allometries. On the other hand, it gives more weight to some specimens in the calculations. To avoid this over-representation, some authors select only one measurement per bone (Grau-Sologestoa et al., 2021), one measurement per bone from any group of articulated remains (Trentacoste et al., 2018, 2021; NietoEspinet et al., 2021) or average values per dimension of a bone (Duval, 2015). How the measurement is selected remains unclear and can affect the analyses since, as we have demonstrated, allometry is not absent from LSI analyses. Here we included all available measurements and took advantage of bone assemblages belonging to single specimens to determine the intraspecimen range of LSI variation. This variation is about 0.07‒0.16 in most cattle (n = 13), but can exceptionally exceed 0.2 (n = 2). In suids, it always exceeds 0.1 and even reaches 0.3 in an individual from Nimes “Place d'Assas” (60‒70 AD). Two important factors certainly contribute to the overall observed LSI variation and were not assessed in this study: sexual dimorphism and the potential presence of wild and domestic specimens in the dataset. In this study, as in most cases when working with archaeozoological assemblages, males and females could not be differentiated, though no groups of size were detected in our analyses. Some studies focus only on elements with low sexual dimorphism (e.g. Albarella et al., 2009; Grau- Sologestoa et al., 2021), but that requires selecting measurements and therefore reducing the dataset. Conversely, variables known to be sexually dimorphic can also be used to better explore the differences between males and females (e.g. GrauSologestoa et al., 2021) and potentially explore changes in sex ratio potentially linked with past husbandry practices (e.g. use of animals for labour or milk production). The presence of aurochs (Bos primigenius), ancestor of cattle, was not considered in this study since its last detected occurrence in the region dates from between the Final Bronze Age and the beginning of the Iron Age (Forest and Cheylan, 2015). Conversely, wild boars are certainly present and are especially difficult to differentiate from domestic pigs in the archaeological record. This is particularly true in the western Mediterranean basin where the local wild boars are particularly small (Albarella et al., 2009; Evin et al., 2015) and where the domestic pigs arrived from the Near East during the Neolithic after genetically admixing with European wild boars all along their route of spread (Frantz et al., 2019). While traditionally, small specimens are identified as domestic pigs (e.g. Albarella et al., 2006b; Rowley-Conwy et al., 2012), here we did not detect a clear group of size, but some measurements were particularly large and likely to belong to wild boar. While it is commonly accepted that the metric distinction of suids is unclear (e.g. Albarella et al., 2006b; Evin et al., 2014), geometric morphometrics can help address this problem (e.g. Cucchi et al., 2009, 2011; Evin et al., 2013, 2015). Indeed, shape seems to be a much more promising indicator of the domestic/wild status of the specimens than size, especially on dental data (Evin et al., 2013, 2015) and such approaches will likely be beneficial to further biometric study in the region. One of the original features of the study presented here is the use of time, not by grouping measurements into chrono-cultural categories, but as a continuous variable. We used the mean of possible time of occupation (mean of the TPQ and TAQ) determined as precisely as possible for each stratigraphic unit of the sites. This approach, more precise than using the average dating of the site (e.g. Frémondeau et al., 2017; Duval and Clavel, 2018) or average dating of phase (e.g. Arbuckle et al., 2014, 2016) is, however, not completely satisfactory as it does not take into account the extent or uncertainty of the occupancy boundaries. In the future, it will be of prime interest to improve this aspect by, for example, applying resampling methods (e.g. bootstrap). 5.2. Diachronic evolution Analyses computed at the scale of the variable have highlighted two main results. First, within a bone, variables do not always show identical diachronic evolution, corresponding either to different trends suggesting allometric differences, or similar trends but shifted in time, suggesting asynchronous evolution. Second, these analyses are strongly and particularly influenced by the sample size, and when the number of measurements is small, a single measurement may have a strong influence on the curve and its confidence interval and particular care must be taken during the interpretations. The analyses of the length, breadth and depth dimensions revealed relatively homogeneous trends except when the number of measurements was relatively low, such as the extremes of the chronological period, or for the goat that was the least well represented species. All measurements considered together, the comparison of the four species revealed different patterns through time. The evolution of the four species during the Roman Empire in western Gallia Narbonensis can now be discussed separately. 5.2.1. Cattle Cattle are, by far, the most variable species we studied, with a regular and continuous size increase between the 2nd c. BC (starting point of our study) and early 2nd c. AD. A contemporaneous size increase has been observed in northern Italy (Trentacoste et al., 2021), Catalonia (Colominas and Sana, 2009; Colominas et al., 2014; Colominas and Edwards, 2017), throughout Gaul and Germania (Duval et al., 2012; Frémondeau et al., 2017; Duval and Clavel, 2018), Switzerland (Groot and Deschler-Erb, 2015), Netherlands (Groot, 2008; Groot et al., 2016) and England (Albarella et al., 2008; Rizzetto et al., 2017). This increase seems to be homogeneous in both intensity and duration across Gaul, though some differences in timing have been reported, with cattle of Narbonese Gaul and Italy being already larger than those of Northern Gaul in the 2nd-1st c. BC (Frémondeau et al., 2017). In Northern Italy, bovine dimensions might have increased since the Bronze Age (Trentacoste et al., 2021). For southern France, the samples from the site of Lattara, which constitute one of the rare references in the region for the transition between Iron Age I & II, suggest an opposite dynamic from Northern Italy with a size decrease during the 5‒4th c. BC (Nieto- Espinet et al., 2020). After reaching a maximum at the beginning of the 2nd c. AD, overall cattle size slightly decreased until the end of the 2nd c. AD to reach what looks like a plateau until the end of the period. This stability of LSI during Late Antiquity has been observed in Switzerland, while LSI decrease in the Netherlands (Groot and DeschlerErb, 2015). However, this result is mitigated by the analyses separating the bone dimensions. In fact, during the 3rd and 4th c. AD, while LSI-length and LSI-breadth remain stable from the middle of the 2nd to the end of the 4th c. AD, a decrease of LSI-depth is observed from the second half of the 2nd c. AD, a fact that was previously unknown in this region but which coincides with recent observations in Northern Italy (Trentacoste et al., 2021). In comparison, in Gaul, only a fall in the length of bovine bones had been observed from the 3rd c. AD (Duval and Clavel, 2018), a result not observed here. In Catalonia (Nieto-Espinet et al., 2021), only bone lengths decrease from Late Antiquity while widths remain stable until the 5th c. AD. Cattle appeared to be the species with greatest variation between bones and between variables within a bone. For example, the variables of the scapula show a size increase followed by a decrease. For some others, like the metapods, variables show a size increase followed by what seems to be a relative stability even if the confidence intervals are particularly large. This reveals different allometries, where not all bones evolve homogeneously over time. In addition, the scapula provides another example of allometries, with asynchronous evolution of its different measurements. While the greatest length of the processus articularis (GLP) and breadth of the glenoid cavity (BG) reached their maximum around year 0, the collum scapulae (SLC) reached his maximum nearly two centuries later. A consequence of these allometry is that the trend observed by bone does not necessarily reflect the diachronic size evolution depicted by the LSI. The detection of allometry, between bones and between variables appeared however greatly influenced by the number of measurements. In cattle, we identified differences between LSI-depth on the one hand, and LSI-length and LSI-breadth on the other hand, especially in the metapods. In northern Italy and England, only their breadths would decrease after the 4th c. AD, implying a drop in the bones robustness (Rizzetto et al., 2017; Trentacoste et al., 2021). This allometric trend was also identified in Languedoc, with only the length of the metapods decreasing around the 6th-7th c. AD, while the breadth decreased earlier, around the 4th-5th c. AD (Mureau, 2020). The bovine metatarsal deserves special attention, as it has been the subject of multiple syntheses for the French area (Forest and Rodet-Belarbi, 1998, 2002; Carrère et al., 2002). In the synthesis of Forest and Rodet-Belarbi (2002), the length of the metatarsal increases during Antiquity from approximately 214 (50 BC to 70 AD) to 230 mm (2nd-6th c. AD), which would represent a range of 0.031 in LSI values, a difference that could not be confirmed by our study due to the large confidence interval we observed. However, despite this uncertainty, metatarsal and metacarpal lengths differ between the beginning and the end of our studied period, confirming these preliminary finds. 5.2.2. Suids In suids, the three bone dimensions show similar patterns, except at the end of the period where less measurements were available. Compared to cattle, the range of variation in suid size is relatively small during the period. While all dimensions increase during the 1st c. BC and then seem to remain stable for a century, the breadth and depth show a small and brief increase until the first quarter of the 2nd c. AD. Then, only the breadth shows a slight and continuous decrease for the rest of the period, while for the two other dimensions the confidence intervals are large but the size seems to increase. This increase in pig size can be traced back to the 4th c. BC in southern France (Duval, 2015). In Northern Italy, an increase has also been identified in LSI-breadth between the Iron Age and Roman period in the North (Trentacoste et al., 2021), and in LSI-length between the Republican and Imperial periods in central Italy (De Grossi Mazzorin and Minniti, 2017), while no variation in size can be noted in Catalonia (Colominas, 2017). At the larger scale of the Gaul, limb bone lengths increased from the end of the 3rd c. BC, with regional variations in the intensity and duration of the increase (Frémondeau et al., 2017). Gallia Narbonensis appears to be the first region to show its maximal average pig size, around 200 AD (Frémondeau et al., 2017), slightly later than what we observed in our study, a difference that may be due to the geographic diversity of the studied sites or the different methodology we used. The maximal average pig size appeared smaller in Narbonensis than in other Gaul territories where the increase appeared more intense and spread over a longer period of time (Frémondeau et al., 2017). Then, the size decrease we observed seemed to continue at least until around the 10th c. AD (Duval, 2015; Mureau, 2020). 5.2.3. Caprines Sheep and goat cannot always be identified in the archaeological record, and in the Western Mediterranean area sheep very often outnumber goats, though some exceptions exist (Forest, 1997, 1999; Forest et al., 2004). As a consequence, the number of measurements available for goats is relatively small and the obtained results should be specified with more data. The size variation of the two species appeared limited, at least when compared to the variation in cattle. Altogether the LSI values increase for both species in the 1st c. BC, and then remain relatively stable until the end of the 2nd c. AD. Analysis by dimensions shows that only breadths increase in sheep during the 2nd-1st c. BC while in goats both breadths and depths increased during the same period. In the absence of an evolution in length, only the robustness and not the height of these two species seems to increase during the first centuries of the Roman period. Then, sheep sizes begin to increase while goat sizes seem to decrease between the 2nd and the 4th c. AD. However, the data are, again, particularly scarce for this period and should be interpreted with caution. The trends we observe appear to be therefore congruent with a previous synthesis in Languedoc (Forest, 2008), where increases in the breadths of humerus, radius and metacarpus were recorded between the 3rd c. BC and the 2nd c. AD, whereas the distal breadth of the tibia did not change throughout the same period. In Catalonia, a size increase from the end of the 3rd c. BC has also been shown (Colominas, 2017). In addition, the site of Lattara revealed a significant increase in caprine sizes between the 5th and 4th c. BC, followed by a stability in size until the 2nd c. AD (Nieto-Espinet et al., 2020). It is therefore possible that the increase we observed started at least between the first and second Iron Age. During Late Antiquity, our results appeared incongruent with previous studies. While we observed a size increase through the period, a size decrease had previously been recorded for the period in Languedoc (Forest, 2008; Mureau, 2020). A size decrease has also been observed in breadth, but not length, measurements in Northern Italy (Trentacoste et al., 2021). Conversely in Central Italy, an increase in ovine bone length between the Imperial period and Late Antiquity has been shown (De Grossi Mazzorin and Minniti, 2017). Further studies are therefore needed to confirm caprine size evolution during Late Antiquity, not only in Languedoc but also in adjacent areas where different trends have been recorded. 5.3. Lines for future research Our analyses provide a detailed and critical description of the different variables analysed and use a diachronic statistical representation coupled with confidence intervals. We detected subtler diachronic variation allowed by a higher temporal accuracy than. large chronocultural phases, and to visually inspect its statistical significance. This work confirms that LSI approaches provide valuable information when studying large-scale size variation over large time periods. It also highlights different trends between variables, bones, or between breath, length and depth dimensions among bones and, thus, underlines the importance of bone-based or variable-based analyses especially for allometry detection. Several points should be considered for future research such as the category of the site, the climate and geography, and a larger time range. 5.3.1. Socio-cultural characteristics While all sites were analysed together, the nature of their occupation was not homogeneous. These socioeconomic differences may be reflected in animal husbandry practices and animal bones. In northern Gaul, from the end of the 1st c. BC to the 4th c. AD, bovine remains discovered in rural contexts are on average larger than in towns (Oueslati, 2002; Duval et al., 2012). Other studies of assemblages from the ancient city centres of Lodeve (Forest, 2019) and Nimes (Forest and Massendari, 2017), also noted lower bovine measurements than those originating from rural settlements. This is also true for pigs during the final La Tene period in northern Gaul, where remains from rural sites show the largest dimensions, while from the 2nd c. AD onwards the largest values are mostly from urban centres and villae (Duval, 2015). This larger size of pigs in urban contexts has also been noted in Italy (MacKinnon, 2001) with less size variation than in rural contexts. Finally, the culture of an occupation can also influence the size of domestic animals. In Catalonia, the so-called Romanization period, between the end of the 3rd and the 1st c. BC, is characterized by a significant difference in bovine and ovine bone dimensions between settlements, with higher values among newly-created settlements than among occupations perpetuated since the Middle Iberian period (Colominas, 2017). 5.3.2. Climate and environment Climate and environment are important parameters to consider, especially in long-term and global studies (e.g. Duval et al., 2015; Marom et al., 2019; Nieto-Espinet et al., 2021). They both play an important role in determining body size (e.g. Davis, 1981). It therefore seems important to take into account climate fluctuations in the context of a broader biometric study, but also the different environments that can impact body mass. This would require palaeoclimatic reconstructions dedicated to the study area. 5.3.3. Geography Regional differences have been reported in the evolution of domestic animals (Duval et al., 2012; Duval, 2015; Duval and Clavel, 2018; Mureau, 2020) and more in depth analyses of size variation may also reveal microregional variation. For example, the evolution of herd stature seen in the lowlands of northern Italy has not been observed in the alpine regions (MacKinnon, 2004) and this has been interpreted as a characteristic of sheep breeds that are particularly constrained to this extreme environment (Mason, 1998; Hall, 2004). Other territories, although integrated into the Roman Empire, may also have experienced the same limitations to their livestock sizes, such as the west of Britain (Maltby, 1981; Hammon, 2005) or Santarem in central Portugal (Davis, 2006). 5.3.4. Time Our study focused on the Roman period in Narbonese Gaul, between the 2nd c. BC and the 4th c. AD. A complementary study of bone dimensions of these species must be carried out between the 5th and 1st c. BC in order to discover the origin of their increase, and their link with a possible Roman influence. Although most of our observations agree with the conclusions of previous studies, the increase in ovine dimensions during Late Antiquity is an original discovery. It deserves to be further investigated with a larger sample of remains from the 2nd-6th c. AD to confirm its significance as well as its durability through Medieval Times. 6. CONCLUSION Whatever the species considered, the increase in bone size at the beginning of the Roman Empire is a long dynamic, inscribed over tens or even hundreds of animal generations. Its beginning could be clearly prior to the 2nd c. BC and therefore calls for a continuation of this work on the Bronze Age and Iron Age periods (Valenzuela-Lamas and Albarella, 2017; Nieto-Espinet et al., 2020; Trentacoste et al., 2021). In any case, the duration of this size increase is at least two centuries for pig, goat and sheep, and over three centuries for cattle. From the 2nd c. AD onwards, each taxon follows a distinct morphological evolution. Cattle and goats tend to fall in size until the end of the sequence, while pigs remain at the same height (LSI-lengths), but more slender (decrease in LSI-breadths). Sheep are the only taxon whose bone size continues to increase, following a stagnation during the 1st and 2nd c. AD. The four species present different diachronic size changes that may result from different agropastoral or environmental conditions. It has been proposed that these changes in domestic animals were linked to the end of the Roman Empire (e.g. Leguilloux and Lepetz, 1996; Duval, 2015; Rizzetto et al., 2017). However, because size evolved over a long duration, over centuries, it seems challenging, or even impossible, to link these changes to specific events. To which extent a transition of the pastoral model can be a sufficient explanation for the changes observed remain unknown (Audoin-Rouzeau, 1994; Forest and Rodet-Belarbi, 2002; Duval and Clavel, 2018; Mureau, 2020), but it seems unlikely that both the Roman conquest and its fall could have had a sudden and major impact on domestic species. The causes of the observed trends therefore remain to be investigated and are certainly multimodal. Only micro-regional studies, comparing multiple socio-economic contexts, a careful exploration of environmental conditions through time, and taking into account the time as accurately as possible will allow the tracking and understanding of distinct morphological trajectories. The concrete contribution that continuous diachronic analysis is able to offer to osteometric syntheses is undeniable and offers much promise. This time-restricted study will be extended within the framework of the DEMETER project (ERC #852573) that aims to understand how and why domestic species change over the eight last millennia in the north western occidental Mediterranean basin. AUTHOR CONTRIBUTIONS Marine JEANJEAN: Conceptualization; Methodology; Software; Formal analysis; Writing - Original Draft; Writing - Review & Editing; Visualization. Cyprien MUREAU: Conceptualization; Methodology; Software; Formal analysis; Writing - Original Draft; Writing - Review & Editing; Visualization. Vianney FOREST: Data acquisition and curation. Allowen EVIN: Conceptualization; Methodology; Resources; Writing - Review & Editing; Supervision; Funding acquisition. DECLARATION OF COMPETING INTEREST The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. ACKNOWLEDGMENTS We gratefully thank Angela Trentacoste, Silvia Valenzuela-Lamas and Ariadna Nieto Espinet, Silvia Guimarães, Jose Pozo for organising the Zooarchaeology Interconnected Mediterranean workshop. This work was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 852573). We thank the reviewers for their comments, which have helped improve this paper. REFERENCES Albarella, U., 2002. Size matters”: how and why biometry is still important in zooarchaeology. In: Dobney, K., O’Connor, T. (Eds.), Bones and the Man: Studies in Honour of Don Brothwell. Oxbow Books, Oxford, pp. 51–62. Albarella, U., 2007. The end of the sheep age: people and animals in the late Iron age. In: Haselgrove, C., Moore, T. (Eds.), The Later Iron Age in Britain and beyond. Oxbow Books, Oxford, pp. 389–402. Albarella, U., Payne, S., 2005. Neolithic pigs from durrington walls, wiltshire, England: a biometrical database. J. Archaeol. Sci. 32, 589–599. https://doi.org/10.1016/j. jas.2004.11.008. Albarella, U., Tagliacozzo, A., Dobney, K., RowleyConwy, P., 2006a. Pig hunting and husbandry in prehistoric Italy: a contribution to the domestication debate. Proc. Prehist. Soc. 72, 193–227. https://doi.org/10.1017/s0079497x00000827. Zooarchaeology Study. University College, London. Baudry, A., 2012. Ressources animales et alimentation carnée à l’ˆAge du Fer: le cas du nord-ouest de la France (Bretagne et Basse-Normandie), vol. 1. Université de Rennes. Albarella, U., Dobney, K., Rowley-Conwy, P., 2006b. The domestication of the pig (Sus scrofa). New challenges and approaches. In: Documenting Domestication : New Genetic and Archaeological Paradigms, pp. 209–227. Berkeley. Benecke, N., 2001. Les restes fauniques d’Alésia. In: Alésia, Fouilles et Recherches Franco-Allemandes Sur Les Travaux Militaires Romains Autour Du MontAuxois (1991-1997). Albarella, U., Johnstone, C., Vickers, K., 2008. The development of animal husbandry from the Late Iron Age to the end of the Roman period: a case study from South-East Britain. J. Archaeol. Sci. 35, 1828–1848. https://doi.org/10.1016/j.jas.2007.11.016. Albarella, U., Dobney, K., Rowley-Conwy, P., 2009. Size and shape of the Eurasian wild boar (Sus scrofa), with a view to the reconstruction of its Holocene history. Environ. Archaeol. 14, 103–136. https://doi.org/10.1179/146141009X1248170992828 3. Altuna, J., 1980. Historia de la domesticacion del País Vasco. Munibe 32, 9–163. Ameen, C., Benkert, H., Fraser, T., Gordon, R., Holmes, M., Johnson, W., Lauritsen, M., Maltby, M., Rapp, K., Townend, T., Baker, G.P., Jones, L.M., Vo Van Qui, C., Webley, R., Liddiard, R., Sykes, N., Creighton, O.H., Thomas, R., Outram, A.K., 2021. In search of the ‘great horse’: a zooarchaeological assessment of horses from England (AD 300–1650). Int. J. Osteoarchaeol. https://doi.org/10.1002/oa.3038. Arbuckle, B.S., Kansa, S.W., Kansa, E., Orton, D., Çakirlar, C., Gourichon, L., Atici, L., Galik, A., Marciniak, A., Mulville, J., Buitenhuis, H., Carruthers, D., Cupere, B. De, Demirergi, A., Frame, S., Helmer, D., Martin, L., Peters, J., Pöllath, N., Pawłowska, K., Russell, N., Twiss, K., Würtenberger, D., 2014. Data sharing reveals complexity in the westward spread of domestic animals across Neolithic Turkey. PLoS One 9. https://doi.org/10.1371/journal.pone.0099845. Arbuckle, B.S., Price, M.D., Hongo, H., Öksüz, B., 2016. Documenting the initial appearance of domestic cattle in the Eastern Fertile Crescent (northern Iraq and western Iran). J. Archaeol. Sci. 72, 1–9. https://doi.org/10.1016/j.jas.2016.05.008. Audoin-Rouzeau, F., 1991. La taille du bœuf domestique en Europe de l’Antiquité aux temps Modernes. La taille du bœuf domestique en Europe de l’Antiquité aux temps Modernes. Fiches d’ostéologie animale pour l’archéologie 2, 2–40. Audoin-Rouzeau, F., 1994. La Taille du cheval en Europe de l’Antiquité aux temps modernes, Fiches d’ostéologie animale pour l’archéologie. Audoin-Rouzeau, F., 1998. Cheptel antique, cheptel médiéval : mutations ou innovations ? Actes des congrès de la Société d’archéologie médiévale. Baker, P., 2000. Society and Economy in Northern Italy in the Early Medieval Period (C. 6th-11th). A Boessneck, J., 1971. Osteological differences between sheep (Ovis aries linné) and goat (Capra hircus linné). In: Brotherweel, D., Higgs, E. (Eds.), Science in Archaeology: A Survey of Progress and Research. Thames and Hudson, London, pp. 331–358. Boessneck, J., Müller, H.-H., Teichert, M., 1964. Osteologische unterscheidungsmerkmale zwischen schaf (Ovis aries Linné) und ziege (Capra hircus Linné). Kuhn-Archiv 78 (1–2), 1–129. Bokonyi, S., 1974. History of Domestic Mammals in Central and Eastern Europe. Akadémiai Kiad ́o, Budapest (Budapest). Cambou, D., 2009. L’élevage et l’alimentation carnée en Bourgogne de la Tène finale au Bas-Empire (130 av. 325 ap. J.-C.). Une analyse des ossements issus des dépotoirs domestiques. Thèse de Doctorat, Université de Bourgogne, Dijon,. Université de Bourgogne. Carrère, I., Forest, V., Rodet-Belarbi, I., 2002. Osteometry and shifts in the bovine population in France. In: Mouvements Ou Déplacements de Populations Animales En Méditerranée Au Cours de l’Holocène, pp. 43–58. Cleveland, W.S., Grosse, E., Shyu, W.M., 1992. Local regression models. In: Chambers, J. M., Hastie, T.J. (Eds.), Chapter 8 of Statistical Models. Wadsworth & Brooks/Cole. Clutton-Brock, J., Dennis-Bryan, K., Armitage, P.L., Jewell, P.A., 1990. Osteology of the soay sheep. Bull. Br. Mus. (Nat. Hist.) Zool. Suppl. 1–56. Colominas, L., 2017. Roman conquest and changes in animal husbandry in the north-east of the Iberian Peninsula: searching for patterns, rates and singularities. ARCHAEOFAUNA 26, 9–22. https://doi.org/10.15366/archaeofauna2017.26.001. Colominas, L., Edwards, C.J., 2017. Livestock trade during the early Roman period: first clues from the trading post of empúries (Catalonia). Int. J. Osteoarchaeol. 27, 167–179. https://doi.org/10.1002/oa.2527. Colominas, L., Saña, M., 2009. Animal husbandry in the north-east of Catalonia from the 1ST to the 5TH century AD: improvement and importation. Studies on the Rural World in the Roman Period 4 (9–26 4), 9– 26. Colominas, L., Schlumbaum, A., Saña, M., 2014. The impact of the Roman Empire on animal husbandry practices: study of the changes in cattle morphology in the north- east of the Iberian Peninsula through osteometric and ancient DNA analyses. Archaeological and Anthropological Sciences 6, 1–16. https://doi.org/10.1007/ s12520-013-0116-9. Columeau, P., 2002. Alimentation carnée en Gaule du sud, Alimentation carnée en Gaule du sud. https://doi.org/10.4000/books.pup.609. Core Team, R., 2021. R: a Language and Environment for Statistical Computing. The R Foundation for Statistical Computing. Cornevin, C., Lesbre, F.-X., 1891. Caractères ostéologiques différentiels de la chèvre et du mouton. Bulletin de la Société d’anthropologie de Lyon 10, 47– 72. https://doi.org/ 10.3406/linly.1891.16337. Cucchi, T., Fujita, M., Dobney, K., 2009. New insights into pig taxonomy, domestication and human dispersal in Island South East Asia: molar shape analysis of Sus remains from Niah Caves, Sarawak. Int. J. Osteoarchaeol. 19, 508–530. https://doi.org/ 10.1002/oa.974. Cucchi, T., Hulme-Beaman, A., Yuan, J., Dobney, K., 2011. Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. J. Archaeol. Sci. 38, 11–22. https://doi. org/10.1016/j.jas.2010.07.024. Davis, S.J.M., 1981. The effects of temperature change and domestication on the body size of Late Pleistocene to Holocene mammals of Israel. Paleobiology 7, 101– 114. https://doi.org/10.1017/S0094837300003821. Davis, S.J.M., 1996. Measurements of a group of adult female Shetland sheep skeletons from a single flock: a baseline for zooarchaeologists. J. Archaeol. Sci. 23, 593–612. https://doi.org/10.1006/jasc.1996.0056. Davis, S.J.M., 2000. The effect of castration and age on the development of the Shetland sheep skeleton and a metric comparison between bones of males, females and castrates. J. Archaeol. Sci. 27, 373–390. https://doi.org/10.1006/jasc.1999.0452. Davis, S.J.M., 2006. Faunal remains from Alcacova de Santarem, Portugal, vol. 43. Trabalhos de Arqueologia. Degerbøl, M., Fredskild, B., 1970. The urus (Bos primigenius Bojanus) Neolithic domesticated cattle (Bos taurus domesticus Linne’) in Denmark. In: Degerbøl, M., Fredskild, B. (Eds.), Zoological and Palynological Investigations. Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter, Copenhagen, pp. 5–178. Dobney, K., 2001. A Place at the table: the role of vertebrate zooarchaeology within a Roman research agenda. In: James, S., Millett, M. (Eds.), Britons and Romans. Council for British Archaeology, York, pp. 36–45. den Driesch, von, A., 1976. A Guide to the Measurement of Animal Bones from Archaelogical Sites. Harvard University Press, Cambridge. Duval, C., 2015. Evolution et diversité de la forme du cochon entre l’âge du Fer et la période moderne en Gaule et en France. Régionalisme, acquisitions zootechniques et implications historiques. Université Fraçois-Rabelais de Tour. Duval, C., Clavel, B., 2018. Bœufs gaulois et bœufs français : morphologies animales et dynamiques économiques au cours de La Tène et des périodes historiques. Gallia. https://doi.org/10.4000/gallia.3904. Duval, C., Lepetz, S., Horard-Herbin, M., 2012. Diversité des cheptels et diversification des morphotypes bovins dans le tiers nord-ouest des Gaules entre la fin de l ’ ˆage du Fer et la période romaine. Gallia 69, 79–114. Duval, C., Lepetz, S., Horard-Herbin, M.P., Cucchi, T., 2015. Did Romanization impact Gallic pig morphology? New insights from molar geometric morphometrics. J. Archaeol. Sci. 57, 345–354. https://doi.org/10.1016/j.jas.2015.03.004. Duval, C., Cucchi, T., Horard-Herbin, M.P., Lepetz, S., 2018. The development of new husbandry and economic models in Gaul between the Iron Age and the Roman Period: new insights from pig bones and teeth morphometrics. J. Archaeol. Sci. 99, 10–18. https://doi.org/10.1016/j.jas.2018.08.016. Elayadeth-Meethal, M., Thazhathu Veettil, A., Maloney, S.K., Hawkins, N., Misselbrook, T.H., Sejian, V., Rivero, M.J., Lee, M.R.F., 2018. Size does matter: parallel evolution of adaptive thermal tolerance and body size facilitates adaptation to climate change in domestic cattle. Ecol. Evol. 8, 10608–10620. https://doi.org/ 10.1002/ece3.4550. Evin, A., Cucchi, T., Cardini, A., Strand Vidarsdottir, U., Larson, G., Dobney, K., Strand, U., Larson, G., Dobney, K., 2013. The long and winding road : identifying pig domestication through molar size and shape. J. Archaeol. Sci. 40, 735–743. https:// doi.org/10.1016/j.jas.2012.08.005. Evin, A., Cucchi, T., Escarguel, G., Owen, J., Larson, G., Strand Vidarsdottir, U., Dobney, K., 2014. Using traditional biometrical data to distinguish West Palearctic wild boar and domestic pigs in the archaeological record: new methods and standards. J. Archaeol. Sci. 43, 1–8. https://doi.org/10.1016/j.jas.2013.11.033. Evin, A., Dobney, K., Schafberg, R., Owen, J., Strand Vidarsdottir, U., Larson, G., Cucchi, T., 2015. Phenotype and animal domestication: a study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa. BMC Evol. Biol. 15, 1–16. https://doi.org/10.1186/s12862-014-0269-x. Evin, A., Bonhomme, V., Claude, J., 2020. Optimizing digitalization effort in morphometrics. Biology Methods and Protocols 5, 1–10. https://doi.org/10.1093/ biomethods/bpaa023. Forest, V., 1997. Données biologiques et données zootechniques anciennes. Essai de mise en équivalence. Rev. Med. Vet. (Toulouse) 148 (12), 951–958. Forest, V., 1999. In: Bergeret, A. (Ed.), Etude archéozoologique, Archéologie et Tramway. Rue Maguelone. Montpellier - Hérault. Service Régional de l’Archéologie Languedoc-Roussillon, Montpellier, pp. 103–117. Forest, V., 2008. Le IIIe s. ap. J.-C. en Narbonnaise languedocienne d’après quelques indices archéozoologiques. In: El Camp Al Segle III. de Septimi Sever a La Tetraquia. Estudis Sobre El M ́on Rural d’època Romana - 3. Institut de Recerca Hist`ori, Banyoles, pp. 189–208. Forest, V., 2015. Données archéozoologiques sur les sites ruraux du Bas-Languedoc entre le VIe et le IIIe s. av. J.-C. : première synthèse. Documents d’Archéologie Méridionale 295–318. https://doi.org/10.4000/dam.2426. Forest, V., 2019. Étude archéozoologique : ostéologie, conchyliologie. In: Lodève – Musée Fleury (Hérault) (Périodes Romaine, Médiévale et Moderne). Forest, V., Cheylan, M., 2015. Les lièvres, les tortues et l’aurochs : une histoire archéozoologique en Languedoc-Roussillon. In: Bardot-Cambot, A., Tranoy, L. (Eds.), L’environnement En Mémoire, pp. 25–43. Forest, V., Massendari, J., 2017. Eléments archéozoologiques. In: Nîmes - Parking Jean- Jaurès. L’histoire d’un Quartier de Nemausus. Forest, V., Rodet-Belarbi, I., 1998. Ostéométrie du métatarse des bovins en Gaule de la Conquête romaine à l’Antiquité Tardive. Forest, V., Rodet-Belarbi, I., 2002. A propos de la corpulence des bovins en France durant les périodes historiques. Gallia 59, 273–306. https://doi.org/10.3406/ galia.2002.3053. Forest, V., Ginouvez, O., Fabre, L., 2004. Les fouilles de la Faculté de Droit à Montpellier. Urbanisme et artisanat de la peau dans une agglomération languedocienne du bas Moyen-Age. Archeol. Midi Mediev. 22, 45–76. https://doi.org/10.3406/ amime.2004.1491. Foucras, S., 2010. Animaux domestiques et faunes sauvages en territoire arverne (Ve s. av. J.-C. - Ier s. av. J.-C.). Université de Bourgogne. Frantz, L.A.F., Haile, J., Lin, A.T., Scheu, A., Geörg, C., Benecke, N., Alexander, M., Linderholm, A., Mullin, V.E., Daly, K.G., Battista, V.M., Price, M., Gron, K.J., Alexandri, P., Arbogast, R.M., Arbuckle, B., Bǎlǎsescu, A., Barnett, R., Bartosiewicz, L., Baryshnikov, G., Bonsall, C., Boric, D., Boroneant ̧, A., Bulatovic, J., Çakirlar, C., Carretero, J.M., Chapman, J., Church, M., Crooijmans, R., Cupere, B. De, Detry, C., Dimitrijevic, V., Dumitras ̧cu, V., Plessis, L. Du, Edwards, C.J., Erek, C.M., ErimOzdoǧan, A., Ervynck, A., Fulgione, D., Gligor, M., Götherström, A., Gourichon, L., Groenen, M.A.M., Helmer, D., Hongo, H., Horwitz, L.K., Irving- Pease, E.K., Lebrasseur, O., Lesur, J., Malone, C., Manaseryan, N., Marciniak, A., M. Martlew, H., Mashkour, M., Matthews, R., Matuzeviciute, G.M., Maziar, S., Meijaard, E., McGovern, T., Megens, H.J., Miller, R., Mohaseb, A.F., Orschiedt, J., Orton, D., Papathanasiou, A., Pearson, M.P., Pinhasi, R., Radmanovic, D., Ricaut, F. X., Richards, M., Sabin, R., Sarti, L., Schier, W., Sheikhi, S., Stephan, E., Stewart, J. R., Stoddart, S., Tagliacozzo, A., Tasic, N., Trantalidou, K., Tresset, A., Valdiosera, C., Hurk, Y. Van Den, Poucke, S. Van, Vigne, J.D., Yanevich, A., Zeeb-Lanz, A., Triantafyllidis, A., Gilbert, M.T.P., Schibler, J., Rowley-Conwy, P., Zeder, M., Peters, J., Cucchi, T., Bradley, D.G., Dobney, K., Burger, J., Evin, A., Girdland- Flink, L., Larson, G., 2019. Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe. Proc. Natl. Acad. Sci. U.S.A. 116, 17231–17238. https://doi.org/10.1073/pnas.1901169116. Frémondeau, D., Nuviala, P., Duval, C., 2017. Pigs and cattle in Gaul: the role of gallic societies in the evolution of husbandry practices. Eur. J. Archaeol. 20, 494–509. https://doi.org/10.1017/eaa.2016.10. Gaeng, C., Méniel, P., Metzler, J., 2019. L’espace public de l’oppidum du Titelberg (L). In: Voter En Grèce, à Rome et En Gaule. MOM éditions, pp. 425–450. https://doi. org/10.4000/books.momeditions.6504. Gaughan, J., Lacetera, N., Valtorta, S.E., Khalifa, H.H., Hahn, L., Mader, T., 2009. Response of domestic animals to climate challenges. Biometeorology for Adaptation to Climate Variability and Change 131– 170. https://doi.org/10.1007/978-1-4020- 8921-3_7. Grau-Sologestoa, I., 2015. Livestock management in Spain from Roman to post-medieval times: a biometrical analysis of cattle, sheep/goat and pig. J. Archaeol. Sci. 54, 123–134. https://doi.org/10.1016/j.jas.2014.11.038. Grau-Sologestoa, I., Ginella, F., Marti-Grädel, E., Stopp, B., Deschler-Erb, S., 2021. Animal husbandry between the Roman times and the High Middle Ages in central Europe: a biometrical analysis of cattle, sheep and pig. Archaeological and Anthropological Sciences 13. https://doi.org/10.1007/s12520-02101426-w. Groot, M., 2008. Animals in Ritual and Economy in a Roman Frontier Community. Groot, M., 2017. Evolution de l’élevage et de l’approvisionnement en Germanie inférieure à l’époque romaine. Eur. J. Archaeol. 20, 451–471. https://doi.org/ 10.1017/eaa.2016.31. Groot, M., Deschler-Erb, S., 2015. Market strategies in the Roman provinces: different animal husbandry systems explored by a comparative regional approach. J. Archaeol. Sci.: Report 4, 447–460. https://doi.org/10.1016/j.jasrep.2015.10.007. Groot, M., Lentjes, D., Zeiler, J., 2016. Barely Surviving or More than Enough? Sidestone Press, 298 p. Grossi Mazzorin, J. De, Minniti, C., 2017. Changes in lifestyle in ancient rome (Italy) across the Iron age/roman transition. In: Albarella, U., Rizzetto, M., Russ, H., Vickers, K., Viner-Daniels, S. (Eds.), The Oxford Handbook of Zooarchaeology. Oxford University Press, Oxford, pp. 127–146. Guintard, C., 1996. Étude ostéométrique des métapodes de bovins : la race charolaise. Muséum National d’Histoire Naturelle, Paris. Hall, S.J.G., 2004. Livestock Biodiversity: Genetic Resources for the Farming of the Future. Hammon, A., 2005. Romano-British Early Medieval Socio-Economic and Cultural Change: Analysis of the Mammal and Bird Bone Assemblages from the Roman City of Viroconium Cornoviorum (Shropshire). Helmer, D., Gourichon, L., 2017. The fauna of Tell Aswad (Damascus, Syria), early Neolithic levels. Comparison with northern and southern Levant sites. In: Mashkou, M., Beech, M. (Eds.), 9th Conference of the ASWA (AA). Archaeozoology of SouthWest Asia and Adjacent Areas, Abu Dhabi Emirate, pp. 23–40. Helmer, D., Rocheteau, M., 1994. Atlas du Squelette Appendiculaire Des Principaux Genres Holocènes De Petits Ruminants Du Nord De La Méditerranée Et Du Proche-Orient (Capra, Ovis, Rupicapra, Capreolus, Gazella). APDCA: Juan-les-Pins. APDCA, Juan-LesPins. Hongo, H., Meadow, R.H., 2000. Faunal remains from Prepottery Neolithic levels at Çayönü, southeastern Turkey: a preliminary report focusing on pigs (Sus sp.). In: Archaeozoology of the Near East IVA Proceedings of the Fourth International Symposium on the Archaeozoology of Southwestern Asia and Adjacent Areas. ARC Publications, Groningen, pp. 121–139. Ijzereef, G.F., 1981. Bronze Age Animal Bones from Bovenkarspel. The Excavation at Hate Valkje. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek, Amersfoort. Johnstone, C., Albarella, U., 2002. The Late Iron Age and Romano-British Mammal and Bird Bone Assemblage from Elms Farm. Centre for Archaeology, Heybridge, Essex, pp. 1–70 (Site Code: Hyef93-95). Technical Report Report 45/2002. Jewell, P.A., Fullagar, P.J., 1966. Body measurements of small mammals: sources of error and anatomical changes. Notes on British Mammals 501–509. Krausz, S., 1985. Les ossements animaux du village des Arènes à Levroux (Indre). Université Paris I. Kron, G., 2014. Animal Husbandry. In: Campbell, G. (Ed.), Oxford Handbook of Animals in Classical Thought and Life. Oxford University Press, Oxford, pp. 109– 135. Leguilloux, M., Lepetz, S., 1996. L’élevage en Narbonnaise et en Gaule du Nord : continuités ou ruptures. In: Le IIIe Siècle En Gaule Narbonnaise. Données Régionales Sur La Crise de l’Empire, pp. 257–275. Lepetz, S., 1996a. Effets de la romanisation sur l’élevage dans les établissements ruraux du Nord de la Gaule : l’exemple de l’augmentation de la stature des animaux domestiques. Revue archéologique de Picardie. Numéro spécial 11, 317–324. https://doi.org/10.3406/pica.1996.1903. Lepetz, S., 1996b. L’animal dans la société galloromaine de la France du nord. Revue archéologique de Picardie. Numéro spécial 12, 7–9. https://doi.org/10.3406/ PICA.1996.1906. Lepetz, S., Matterne, V., 2003. Élevage et agriculture dans le Nord de la Gaule durant l’époque galloromaine : une confrontation des données archéologiques et carpologiques. Rev. Archeol. Picardie 1, 23–35. https://doi.org/10.3406/ pica.2003.2354. Lepetz, S., Yvinec, J.-H., 1998. L’élevage à la période gallo-romaine et au haut Moyen ˆAge en Normandie. Apport de l’archéozoologie. In: Manneville, P. (Ed.), Le Monde Rural En Normandie: Ceux de La Plaine, Ceux Du Bocage. XXXIIe Congrès des Sociétés Historiques et Archéologiques de Normandie, Gisors. Musée de Normandie, pp. 83–109. Lepetz, S., Zech-Matterne, V., 2017. Productions agropas- torales, pratiques culturales et élevage dans le nord de la gaule du deuxième siècle avant J.-C à la fin de la période romaine, Autun, Mergoil. In: Mergoil, M. (Ed.), Actes de La Table-Ronde Internationale. Montagnac, Paris, p. 152. MacKinnon, M., 2001. High on the hog: linking zooarchaeological, literary, and artistic data for pig breeds in roman Italy. Am. J. Archaeol. 105, 649. https://doi.org/ 10.2307/507411. MacKinnon, M., 2004. Production and Consumption of Animals in Roman Italy: Integrating the Zooarchaeological and Textual Evidence. MacKinnon, M., 2010. Cattle “breed” variation and improvement in roman Italy: connecting the zooarchaeological and ancient textual evidence. World Archaeol. 42, 55–73. https://doi.org/10.1080/00438240903429730. Maltby, M., 1981. Iron Age, Romano-British and Anglo-Saxon animal husbandry a review of the faunal evidence. In: Jones, M., Dimbleby, G. (Eds.), The Environment of Man: The Iron Age to the AngloSaxon Period. British Archaeological Reports, Oxford, pp. 155–203. Manin, A., Cornette, R., Lefèvre, C., 2016. Sexual dimorphism among Mesoamerican turkeys: a key for understanding past husbandry. J. Archaeol. Sci.: Report 10, 526–533. https://doi.org/10.1016/j.jasrep.2016.05.066. Marom, N., Meiri, M., Tepper, Y., Erickson-Gini, T., Reshef, H., Weissbrod, L., Bar-Oz, G., 2019. Zooarchaeology of the social and economic upheavals in the late antique-early islamic sequence of the negev desert. Sci. Rep. 9, 1–10. https://doi.org/10.1038/ s41598-019-43169-8. Mason, I.L., 1998. Mediterranean breeds of cattle, sheep and goats. In: Isotope Aided Studies on Livestock Productivity in Mediterranean and North African Countries, pp. 22–30. O’Connor, T., O’Connor, T., 2008. The Archaeology of Animal Bones. Texas A&M University Press. Matolcsi, J., 1970. Historische Erforschung der Körpergr sse des Rindes aufgrund von ungarischen Knochenmaterial. Zeitschrift für Tier-züchtung und Züchtungsbiologie 87, 89–137. Pacifici, M., Visconti, P., Butchart, S.H.M., Watson, J.E.M., Cassola, F.M., Rondinini, C., 2017. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208. https://doi.org/10.1038/nclimate3223. Mccain, C.M., King, S.R.B., 2014. Body size and activity times mediate mammalian responses to climate change. Global Change Biol. 20, 1760–1769. https://doi.org/ 10.1111/gcb.12499. Meadow, R.H., 1981. Early animal domestication in South Asia: a first report of the faunal remains from Mehrgarh, Pakistan. In: South Asian Archaeology. Dietrich Reimer Verlag, Berlin, pp. 143–179. Meadow, R.H., 1999. The use of size index scaling techniques for research on archaeo-zoological collections from the Middle East. Historia animalium ex ossibus. Contributions to palaeo-anatomy, archaeology, egyptology, ethnology and veterinary history. Studies in Honour of Angela von Den Driesch 285–300. Méniel, P., 1984. Contribution à l’histoire de l’élevage en Picardie. Du néolithique à la fin de l’âge du Fer. Rev. Archeol. Picardie 3, 1–56. Méniel, P., 1990. Modifications de l’élevage à la fin de l’âge du Fer. Revue archéologique de l’Ouest supplément 271–276. Méniel, P., 1992. Alimentation carnée, offrandes funéraires et sacrifices animaux chez les Gaulois : archéozoologie à la fin de l’âge du Fer en France septentrionale. Tech. Cult. https://doi.org/10.4000/tc.697. Méniel, P., 1996. Importation de grands animaux romains et amélioration du cheptel à la fin de l’âge du Fer en Gaule Belgique. Rev. Archeol. Picardie 3, 113– 122. https:// doi.org/10.3406/pica.1996.2179. Méniel, P., 2014. Mormont II : les restes animaux. CAR - Cahiers d’archéologie romande. Mureau, C., 2020. Consommation et exploitation des ressources animales en Auvergne et en Languedoc de l’Antiquité tardive au haut Moyen ˆAge. Université de Bourgogne. Nieto-Espinet, A., Valenzuela-Lamas, S., Bosch, D., Gardeisen, A., 2020. Livestock production, politics and trade: a glimpse from Iron age and roman Languedoc. J. Archaeol. Sci.: Report 30, 102077. https://doi.org/10.1016/j. jasrep.2019.102077. Nieto-Espinet, A., Huet, T., Trentacoste, A., Guimar ̃aes, S., Orengo, H., Valenzuela- Lamas, S., 2021. Resilience and livestock adaptations to demographic growth and technological change: a diachronic perspective from the Late Bronze Age to Late Antiquity in NE Iberia. PLoS One 16, 1–47. https://doi.org/10.1371/journal. pone.0246201. Oueslati, T., 2002. Approche socio-économique et culturelle de la ville gallo-romaine de Lutèce. Payne, S., Bull, G., 1988. Components of variation in measurements of pig bones and teeth, and the use of measurements to distinguish wild from domestic pig remains. Archaeozoologia 2, 27–66. Peters, J., 1998. Römische Tierhaltung und Tierzucht. Eine Synthese aus archäozoologischer Untersuchung und schriftlich-bildlicher Überlieferung, Marie Leid. In: Passaver Universitäts Schriften zur Archäologie. Rahden. Pigière, F., 2017. L’évolution des pratiques d’élevage des bovins à l’époque romaine en Gaule Belgique et dans l’ouest de la Germanie inferieure. Eur. J. Archaeol. 20, 472–493. https://doi.org/10.1017/eaa.2017.1. Pozo, J.M., Trentacoste, A., Nieto-Espinet, A., Guimarães Chiarelli, S., Valenzuela- Lamas, S., 2022. Zoolog R package: zooarchaeological analysis with log-ratios. Quat. Int. https://doi.org/10.1016/j.quaint.2022.11.006. Prummel, W., Frisch, H.J., 1986. A guide for the distinction of species, sex and body side in bones of sheep and goat. J. Archaeol. Sci. 13, 567–577. https://doi.org/10.1016/0305-4403(86)90041-5. Riedel, A., 1994. Archaeozoological investigactions in North-eastern Italy: the exploitation of animals since the Neolithic. Preistoria Alp. 30, 43–94. Rizzetto, M., Crabtree, P.J., Albarella, U., 2017. Les transformations de l’élevage au début et à la fin de l’époque romaine en Grande Bretagne : questions d’acculturation, d’adaptation et « d’amélioration. Eur. J. Archaeol. 20, 535–556. https://doi.org/10.1017/eaa.2017.13. Robin, O., Clavel, B., 2018. The diversity evolution of sheep morphology in French zooarchaeological remains from the 9th to the 19th century: analysis of pastoral strategy. J. Archaeol. Sci. 99, 55–65. https://doi.org/10.1016/j.jas.2018.08.017. Rowley-Conwy, P., Albarella, U., Dobney, K., 2012. Distinguishing wild boar from domestic pigs in prehistory: a review of approaches and recent results. J. World PreHistory 25, 1–44. https://doi.org/10.1007/s10963-012-9055-0. Salvagno, L., Fraser, T., Grau-Sologestoa, I., Albarella, U., 2021. A method to assess wear rate in pig teeth from archaeological sites. J. Archaeol. Sci. 127, 1–17. https://doi.org/10.1016/j.jas.2021.105331. Savolainen, O., Lascoux, M., Merilä, J., 2013. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820. https://doi.org/10.1038/nrg3522. Schmölcke, U., Groß, D., 2021. Cattle husbandry and aurochs hunting in the Neolithic of northern Central Europe and southern Scandinavia. A statistical approach to distinguish between domestic and wild forms. Int. J. Osteoarchaeol. 31, 108–118. https://doi.org/10.1002/oa.2929. Simpson, G., 1941. Large pleistocene felines of north America - explanation of ratio diagrams. Am. Mus. Novit. 1–27. Simpson, G., Roe, A., Lewontin, R., 1960. Quantitative Zoology. Harcourt Brace, New-York. Steppan, K., 2001. Ur oder hausrind? Die variabilität der Wildtieranteile in line-abandkermischen tierknochenkomplexen. In: Arbogast, R.-M., Jeunesse, C., Schibler, J. (Eds.), Rolle Und Bedeutung Der Jagd Während Des Frühneolithikums Mitteleuropas (Linearbandkeramik 5500–4900 V. Chr.). Rahden Marie Leidorf, pp. 171–186. Sumner, F.B., 1927. Linear and colorimetric measurements of small mammals. J. Mammal. 8, 177– 206. Sykes, N.J., Baker, K.H., Carden, R.F., Higham, T.F.G., Hoelzel, A.R., Stevens, R.E., 2011. New evidence for the establishment and management of the European fallow deer (Dama dama dama) in Roman Britain. J. Archaeol. Sci. 38, 156–165. https://doi.org/10.1016/j.jas.2010.08.024. Telldahl, Y., Svensson, E.M., Götherström, A., Storå, J., 2012. Osteometric and molecular sexing of cattle metapodia. J. Archaeol. Sci. 39, 121–127. https://doi.org/10.1016/j.jas.2011.09.009. Trentacoste, A., 2020. Fodder for change: animals, urbanisation, and socio-economic transformation in protohistoric Italy. Theoretical Roman Archaeology Journal 3, 1–17. https://doi.org/10.16995/traj.414. Trentacoste, A., Nieto-Espinet, A., Valenzuela-Lamas, S., 2018. Pre-Roman improvements to agricultural production: evidence from livestock husbandry in late prehistoric Italy. PLoS One. https://doi.org/10.1371/journal.pone.0208109. Trentacoste, A., Nieto-Espinet, A., Guimarães, S., Wilkens, B., Petrucci, G., Valenzuela-Lamas, S., 2021. New trajectories or accelerating change? Zooarchaeological evidence for Roman transformation of animal husbandry in Northern Italy. Archaeological and Anthropological Sciences 13. https://doi.org/10.1007/s12520-020-01251-7. Uerpmann, H.-P., 1979. Probleme der Neolithisierung des Mittelmeerraums. Beihefte zum Tiibinger Atlas des Vorderen Orients. Reihe B, Wiesbaden. Uerpmann, H.-P., 1984. Through a world of sheep. Nature 308. https://doi.org/10.1038/308671a0. Uerpmann, M., Uerpmann, H.P., 1994. Animal bone finds from excavation 520 at Qala’at al-Bahrain. In: Hojlund, F., Andersen, H.H. (Eds.), Qala’at Al- Bahrain - the Northern City Wall and the Islmaic Fortress. Jutland Archaeological Society Publications, pp. 417–444. Valenzuela, A., Alcover, J.A., Cau, M.A., 2013. Tracing changes in animal husbandry in Mallorca (Balearic Islands, Western Mediterranean) from the Iron Age to the Roman Period. In: Groot, M., Lentjes, D., Zeiler, J. (Eds.), Barely surviving or more than enough. Sidestone Press, Leiden, pp. 201–223. Valenzuela-Lamas, S., Albarella, U., 2017. Animal husbandry across the western roman Empire: changes and continuities. Eur. J. Archaeol. 20, 402–415. https://doi.org/10.1017/eaa.2017.22. Vigne, J.D., 1988. Les mammifères post-glaciaires de Corse. Etude archéozoologique. Gallia Préhistoire, Paris. Weinstock, J., 2002. Reindeer hunting in the Upper Palaeolithic: sex ratios as a reflection of different procurement strategies. J. Archaeol. Sci. 29, 365–377. https://doi.org/10.1006/jasc.2002.0716. Wolfhagen, J., 2020. Re-examining the use of the LSI technique in zooarchaeology. J. Archaeol. Sci. 123, 105254 https://doi.org/10.1016/j.jas.2020.105254. Wright, E., 2021. Investigating cattle husbandry in the Swiss Late Neolithic using different scales of temporal precision: potential early evidence for deliberate livestock “improvement” in Europe. Archaeological and Anthropological Sciences 13. https://doi.org/10.1007/s12520-020-01252-6. Yablokov, A.V., 1975. Variability of mammals. Nature 258, 779, 779. Yezerinac, S.M., Lougheed, S.C., Handford, P., 1992. Measurement error and morphometric studies: statistical power and observer experience. Syst. Biol. 41, 471–482. https://doi.org/10.1093/sysbio/41.4.471. Yvinec, J.-H., 1983. Les restes animaux du silo de Champlieu (Oise). Rev. Archeol. Picardie 1. https://doi.org/10.3406/pica.1983.2999. Zeder, M., 2008. Animal domestication in the zagros: an update and directions for future research. In: Vila, E., Gourichon, L., Choyke, A., Buitenhuis, H. (Eds.), Archaeozoology of the Near East VIII: Proceedings of the Eighth International Symposium on the Archaeozoology of Southwestern Asia and Adjacent Areas. Maison de l’Orient et de la M éditerran ée Jean Pouilloux, Lyon, pp. 243–277. Zeder, M., Lemoine, X., 2020a. A method for constructing demographic profiles in Sus scrofa using Logarithm Size Index scaling. J. Archaeol. Sci. 116, 105115 https://doi.org/10.1016/j.jas.2020.105115. Zeder, M.A., Lemoine, X., 2020b. Factors affecting molar size in Sus scrofa. J. Archaeol. Sci. 124, 105266 https://doi.org/10.1016/j.jas.2020.105266. SUPPLEMENTARY INFORMATION <SI figure 1>: Description of the unpublished measurements used in this study <SI figure 2 >: Log Size index evolution by taxa (A= Cattle, B= Suids and C= Sheep/Goat), bones and variables between 200BC et 400 AD. Only appendicular skeleton measurements where there is than 30 measurements per variables are presented. Goat Log Size Index evolution is not available because of a lack of data. Each point corresonds to a measurment dated by the mean of TPQ/TAQ of its stratigraphic unit. ID City Site name Reference T.P.Q. T.A.Q. Cattle Pig Goat Sheep 1 2 3 Balaruc-le-Vieux Montredon-des-Corbières Trèbes 18 bis, rue de la République Sainte-Croix Beragnes Forest 2020a Forest 2003c Forest 2014 -200 -150 -150 -100 -100 -100 13 12 4 0 28 1 0 11 0 0 44 2 4 5 Carcassonne Cournonterral La Cavayère Les Joncasses Forest 2008a Forest 2018a -150 -225 -50 200 130 7 79 2 9 4 91 8 6 7 8 Alzone Castelnau-le-Lez Fontès Borde Neuve Mas de Caylus Fontcouverte Unpublished Forest 2020b Forest unpublished -125 -200 -100 -50 -50 -50 8 17 0 1 72 1 0 18 0 0 38 0 9 10 11 Villeneuve-la-Comptal Arles Saintes-Maries-de-la-Mer En David La Tour du Valat Ile de Mornès Forest 1999 Forest 2004a Forest 2004c -100 -40 -50 1 25 1 7 14 3 1 4 3 0 0 1 2 27 7 12 13 Castries Arles Mas de Roux La Capelière Fabre & Forest 2016 Forest 2019f -60 -125 75 60 2 110 13 3 0 0 0 0 14 15 16 Villevieille Mondragon Nîmes Impasse de la Cure Les Brassières Nord Les Arènes Forest 2018b and Forest 2020c Vermeulen et al. 1997 Forest 2010a -50 -150 -25 100 -15 200 4 0 10 4 2 46 1 5 0 10 2 12 17 18 19 Nîmes Nîmes Nîmes Carsalade Avenue Jean-Jaurès, 59 Mas des Abeilles II.6 Forest 2003d Unpublished Forest 2009 20 70 -25 30 100 150 11 1 4 0 0 0 0 0 0 0 0 0 20 21 Perpignan Clermont-L'Herault Le Petit Clos Peyre Plantade Forest 1999/2000 Forest 2003a 50 -100 70 400 207 74 3 79 0 36 0 33 22 23 24 Lattes Bram Nîmes Fromigue Le Village Place d'Assas Forest 2017a Forest 1998 Forest 2006b -50 0 60 300 250 70 60 75 14 12 108 120 0 2 0 0 37 8 25 26 27 Nîmes Nîmes Nîmes Parking Jean Jaurès Mas de Vignoles IX 12, rue Leopold Morice Forest 2017c Forest 2012a Forest 2017b -150 -100 10 300 -50 175 222 714 1 0 13 10 41 0 0 131 0 4 28 29 Aspiran Clermont-L'Herault Soumaltre La Madeleine II Forest & Rodet-Belarbi 2002 Forest 2006a 1 -100 200 150 22 7 6 13 0 0 22 7 30 31 32 Valros Tourbes Nîmes Vigne de Bioaux Mont Ferrier 24, rue Emile Jamais Forest 2010c Forest 2011c Forest 2016 100 10 -200 150 225 300 4 6 5 0 6 44 0 6 0 0 9 0 33 34 35 Paulhan Magalas Quarante Vareilles Les Terrasses de Montfo Soulomiac Forest 2002a Forest 2015b Forest 1996/1997 -30 -100 100 220 400 200 387 16 0 37 56 1 29 15 0 122 89 3 36 37 Valros Béziers Rec de Ligno Le Gasquinoy Forest 2010b Buffat et al. 2009 -25 50 200 225 12 1 18 3 22 0 36 6 38 39 40 Nîmes Mudaison Caramany Mas de Vignoles XIV Les Aubettes Pla de l'Aïgo II Forest 2012b Bardot-Cambot et al. 2016 Fabre et al. 1999 50 -25 0 275 425 400 34 46 1 21 1 2 0 4 0 37 5 0 41 42 43 Lattes Lattes Claira Castelle-Pahon-Pinède Port Ariane Sant Jaume de Crest Fabre & Forest 2017 Forest 2004b Forest 2011a 1 75 0 200 275 350 12 17 24 0 0 12 0 0 9 0 0 22 44 45 Lattes Lodève Castelle-GR Place du Cdt Morand Bardot-Cambot et al. 2017 Forest 2015a 10 0 175 300 12 5 2 17 0 11 0 45 46 47 48 Valros Narbonne Castelnau-le-Lez Le Renaussas Clos de la Lombarde Parc Eureka Forest 2011d Forest 2001 Forest 2019a 100 -75 75 275 425 300 1 19 9 0 419 10 1 16 0 9 76 0 49 50 51 Lodève Lunel Prades Musée Fleury Mas de Fourques II Ouest Rue de la Basse Forest 2019b Forest 2019c Forest 2015c -25 150 50 350 300 400 11 0 8 43 19 7 0 0 0 0 0 10 52 53 Sète Saint-Victor-la-Coste rue des Mesanges Les Aumignanes Forest 2019e Forest 2008b 1 50 600 400 22 28 21 24 0 3 0 11 54 55 56 Pézenas Montagnac Soupex L'Auribelle-basse Lieussac Fontvieille Forest 2002b Forest 1995 Guillaume et al. 2007 220 230 50 265 260 500 74 7 9 52 6 4 24 4 0 80 21 2 57 58 59 Lunel-Viel Nîmes Ansignan Le quartier central Mas Vigier Le Mas Forest 2007 Forest 2011b Unpublished 0 -100 50 420 500 700 42 5 6 26 0 6 1 0 0 42 0 0 60 61 Perpignan Villetelle Parc Ducup Ambrussum Forest 2019d Forest 1996 -100 300 400 400 10 17 5 3 0 0 0 2 62 63 64 Milhaud Montblanc Saintes-Maries-de-la-Mer Careiron et Pesquier Les Cresses Basses Le Carrelet Forest 2003b Unpublished Forest 2004c 100 150 1 150 500 500 4 21 23 0 5 2 0 0 0 0 0 1 <SI Table 1> Information on the archaeological sites studied. Site names and their city of origin. Terminus post quem (T.P.Q.) and terminus ante quem (T.A.Q.) of the studied stratigraphic units and number of biometric measurements per species. The number (n) refer to those on the maps of figure 1. References of the supplementary table 1 Bardot-Cambot et al 2016 : BARDOT-CAMBOT A., FABRE M., FOREST V. (2016) : Étude archéozoologique : ostéologie et conchyliologie. in “Mudaison-Les Aubettes. Un établissement viticole antique”, Y. Pascal (dir.), Rapport d’opération - Fouille archéologique, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, tome II, pp.51-82 Bardot-Cambot et al 2017 : BARDOT-CAMBOT A., FABRE M., FOREST V. (2017) : Étude archéozoologique : ostéologie et conchyliologie. Castelle GR – Lattes (Hérault) (périodes romaine et médiévale). in “Lattes, Castelle-GR. Une exploitation agro-pastorale antique et une occupation du haut Moyen Âge”, D. Tosna (dir.), Rapport d’opération - Fouille archéologique, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, tome 2, pp.157-223. Buffat et al (Forest) 2009 : BUFFAT L., LE ROY L., GUERRE J., FRITZ R., BOUCHET M., FIGUEIRAL-ROWE I., BOUBY L., FOREST V., RAUX S. (2009) : Etude archéozoologique : ostéologie, conchyliologie. In "Au cœur du vignoble de l'ager baeterrensis : Fermes et plantations du Gasquinoy à Béziers. Futur centre pénitentiaire", L. Buffat et al, Rapport final d'opération de fouille archéologique, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.149-173 (313p.) Fabre et al 1999 : FABRE V., FOREST V., KOTARBA J. (1999) : Dépôts cultuels domestiques dans la ferme d'époque romaine du Pla de l'Aïgo (Caramany, Pyrénées-Orientales). Revue Archéologique de Narbonnaise 32, pp.271-292 Fabre et Forest 2016 : FABRE M., FOREST V. (2016) : Étude archéozoologique : ostéologie et conchyliologie. in “Du manse au village, l’établissement du mas de Roux du IXe au XIVe siècle (Catsries)”, M. Ott (dir.), Rapport d’opération - Fouille archéologique, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.135-195 Fabre et Forest 2017 : FABRE M., FOREST V. (2017) : Étude archéozoologique : Ostéologie, conchyliologie. in “Lattes, Castelle, Pahon, Pinède. Se déplacer, cultiver et mourir dans la campagne lattoise de l’Antiquité à nos jours”, M. Compan (dir.), Rapport final d’opération – Fouille préventive, Service Régional de l'Archéologie Occitanie, Montpellier, pp.256-274 Forest 1995 : FOREST V. (1995) : Etude d'un lot de restes osseux de Vertébrés de la villa gallo-romaine de Lieussac (Montagnac, Hérault). in S. Mauné, Document Final de Synthèse en cours, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier. Forest 1996 : FOREST V. (1996) : Etude de faune. Zone 10 du quartier bas d'Ambrussum (Villetelle, Hérault). in J.-L. Fiches, Document Final de Synthèse en cours, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier. Forest 1996/97 : FOREST V. (1996/97) : Annexe : Etude de la faune. in "Quarante, Soulomiac. Bâtiment et zone d'ensilage en périphérie d'un habitat gallo-romain et médiéval", I. Bermond, Etudes archéologiques sur le tracé du gazoduc Artère du Midi. Vol. 9 : secteur du Nord-Bitterois, Service Régional de l'Archéologie Languedoc-Roussillon, AFAN, GDF, 69p. Forest 1998 : FOREST V. (1998) : Etudes des restes fauniques. Bram - Aude (Ier - IIIe siècle ap. J.C.). in M. Passelac, rapport intermédiaire, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier. Forest 1999 : FOREST V. (1999) : Etude archéozoologique. En David - Villeneuve-la-Comptal (Aude). Ier av. J.-C. - Ier siècle ap. J.-C. in M. Passelac, rapport d'étude. Forest 1999/2000 : FOREST V. (1999/2000) : Etude archéozoologique de l'us 2057 du silo SI 2050. in Perpignan - Le Petit Clos. Nouvelle campagne sur un vaste établissement du Haut Empire, J. Kotarba (dir.), Document Final de Synthèse, Afan, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.65-78. Forest 2001 : FOREST V., FABRE V. (col.) (2001) : Etude archéozoologique. Conchyliologie et ostéologie. Clos de La Lombarde/puits III - Narbonne (Aude), (fin IIe-IIIe s. ap. J.-C.). in R. Sabrié, rapport en cours, Service Régional de l'Archéologie LanguedocRoussillon, Montpellier Forest 2002a : FOREST V. (2002) : Etude archéozoologique. Vareilles - Paulhan (Hérault). (30 av. J-C. - 250 ap. J.-C.). in S. Mauné (dir.), Document Final de Synthèse en cours, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier. Forest 2002b : FOREST V., CHEYLAN M. (coll.) (2002) : Etudes archéozoologiques : Ostéologie et conchyliologie. Site de L’Auribelle Basse - Pézenas (Hérault). Dépotoir 1043 (IIIe s. ap. J.-C.). Rapport intermédiaire, fouille S. Mauné. Forest 2003a : FOREST V., CHEYLAN M. (coll.), (2003) : Etudes archéozoologiques : Ostéologie et conchyliologie. Site de Peyre Plantade – Clermont-l'Hérault (Hérault) (Ier s.av. J.-C. – VIe s. ap. J.-C.) H. Pomarèdes (dir.), Rapport en cours, Service Régional de l'Archéologie Languedoc-Roussillon. Forest 2003b : FOREST V. (2003) : Etude archéozoologique (seconde moitié du Ier s. ap. J.-C. - XIIe s.) in "Careiron et Pesquier - Lycée 2 à Milhaud (Gard)", F. Conche, M. Guillaume, E. Plassot (dir.), Document Final de Synthèse, Service Régional de l'Archéologie Languedoc-Roussillon, Institut national de recherches archéologiques préventives, pp.99-110 Forest 2003c : FOREST V. (2003) : Etude archéozoologique. in "Une fosse de la seconde moitié du IIe s. av. n. e. Montredon-Corbières. Lieu-dit : Sainte-Croix, Les Combes (Aude)", M. Courrent (dir.), Document Final de Synthèse, Service Régional de l'Archéologie Languedoc-Roussillon, pp.4367 Forest 2003d : FOREST V. (2003) : Etude archéozoologique (Ostéologie - Conchyliologie). Carsalade - Nîmes (Gard), (20-30 ap. J.-C.). Rapport manuscrit prépublicatoire, 7p. Forest 2004a : FOREST V. (2004) : Etude archéozoologique. in "“Le Grand Parc”, un habitat du Ier s. avant notre ère en Camargue, Domaine de la Tour du Valat (Arles, Bouches-du-Rhône)", M. Pasqualini, P. Excoffon, C. Vella (dir.), Documents d’Archéologie méridionale, 27, pp.251-313 Forest 2004b : FOREST V. (2004) : Étude archéozoologique des ossements de Port Ariane. in "Port Ariane III. Occupation et utilisation d'une zone humide lors des six derniers millénaires à Lattes (Hérault)", I. Daveau (dir.), Document Final de Synthèse, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.281-309 Forest 2004c : FOREST V. (2004) : Etude archéozoologique. in "Delta du Rhône. Camargue antique, médiévale et moderne", C. Landuré, M. Pasqualini (dir.) et A. Guilcher (coll.), Bulletin Archéologique de Provence, supplément 2, Association Provence Archéologie (Eds), Aix-enProvence, pp.241-267 Forest 2006a : FOREST V. (2006) : Étude archéozoologique, ostéologie, conchyliologie.. in "La Madeleine II. Un établissement rural antique de bord de voie (liaison routière RD2/A75). Clermont-l’Hérault (Hérault)", H. Pomarèdes (dir.), rapport final d'opération, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.220-241 Forest 2006b : FOREST V., POITEVIN F. (coll.) (2006) : Etudes archéozoologiques : ostéologie et conchyliologie du puits PT3094 comblé entre 60-70 ap. J.-C. in "Place d'Assas à Nîmes (Gard)" F. Conche (dir.), Document Final de Synthèse, INRAP, Service Régional de l'Archéologie LanguedocRoussillon, Montpellier, t1 pp.123-141, t2 pp.5-9 Forest 2007 : FOREST V., CHEYLAN M. (coll.) (2007) : Etude archéozoologique : ostéologie. in C. Raynaud (dir.), “Archéologie d’un village languedocien. Lunel-Viel du Ier au XVIIIIe s.”, Monographies d'Archéologie Méditerranéenne, 22, Lattes, 407p., pp.65-79. Forest 2008a : FOREST V. (2008) : Étude archéozoologique. In “Lotissement "Les Résidences du Lac" (tranches 1 et 3). "La Cavayère", Carcassonne (Aude). Un établissement rural à enclos fossoyé dans la vallée de l'Aude au début de l'époque romaine (IIe s. – Ier s. av. J.-C.)”, P. Rascalou (dir.), Rapport Final d'Opération Fouille archéologique préventive, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.92-112 (231p.) Forest 2008b : FOREST V., DEGUEURCE M. (coll.) (2008) : Étude archéozoologique. Les Aumignanes – Saint-Victor-la-Coste (Gard). (périodes romaine et médiévale). Rapport de Projet d’Activités Scientifique, Inrap, Montpellier. Forest 2009 : FOREST V. (2009) : Etude archéozoologique. In “Mas des Abeilles II.6. Nîmes (Gard). Voie, tombes antiques et vestiges d’occupations d’époques protohistorique et néolithique“, V. Bel et al (dir.), rapport final d'opération de fouille archéologique, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, vol.2, pp.12-20. Forest 2010a : FOREST V. (2010) : Etude archéozoologique : ostéologie et conchyliologie des ensembles d’époque romaine. in “Nouvelles données sur les abords de l’amphithéâtre de Nîmes (Gard). Fouille et surveillance de travaux préalables au projet Arènes-Esplanade-Feuchères (AEF). Trottoirs nord et ouest et place des Arènes”, Y. Manniez (dir.), Rapport final d’opération de fouille archéologique, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, tome 2, pp.109-149 Forest 2010b : FOREST V. (2010) : Analyse archéozoologique. In “Le site de Rec de Ligno. Des bâtiments cultuels et funéraires à proximité d’une unité de production viticole ? Autoroute A75 – Section Béziers – Pézenas. Hérault, Montblanc et Valros. Aire de repos de Valros. Occupations d’un espace rural antique dans le territoire de la cité de Béziers”, C. Jung, V. Bel (dir.), Rapport final d’opération, fouille archéologique, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, 4 tomes, II, pp.169-201. Forest 2010c : FOREST V. (2010) : Les restes de faune. In “L’ensemble funéraire de la Vigne de Bioaux. Autoroute A75 – Section Béziers – Pézenas. Hérault, Montblanc et Valros. Aire de repos de Valros. Occupations d’un espace rural antique dans le territoire de la cité de Béziers”, C. Jung, V. Bel (dir.), Rapport final d’opération, fouille archéologique, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, 4 tomes, III, pp.81-89. Forest 2011a : FOREST V. (2011) : Étude archéozoologique : Ostéologie, conchyliologie. Sant Jaume de Crest – Claira (Pyrénées-Orientales) (IIe s. ap. J-C). In V. Canut, rapport en cours INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier Forest 2011b : FOREST V. (2011) : Étude archéozoologique. Ostéologie, conchyliologie. in “Languedoc-Roussillon, Gard, Nîmes. Mas Vigier, Cadereau de saint Cézaire”, A. Ratsimba et al (dir.), Rapport final d’opération, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, tome 1/2, pp.229-250 Forest 2011c : FOREST V. (2011) : Étude archéozoologique, ostéologie, conchyliologie. In “Autoroute A75 - Section Béziers-Pézenas - Secteur 1. Hérault, Tourbes, Mont Ferrier. “D’une ferme à l’autre”. Les établissements agricoles de Mont Ferrier durant le Haut Empire à Tourbes”. M. Compan (dir.), Rapport final d’opération. Fouille archéologique, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.201-218 Forest 2011d : FOREST V. (2011) : Analyse de la faune. In “Autoroute A75-Section Béziers-Pézenas, Hérault, Montblanc et Valros. Renaussas et Champ Redon. Installations agricoles et espace funéraire antiques autour d’un carrefour de voie”, C. Jung (dir.), Rapport final d’opération, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, tome 1/2, pp.233-249, 281 Forest 2012a : FOREST V. (2012) : Étude archéozoologique : ostéologie, conchyliologie. in “Languedoc, Gard, Nîmes, Mas de Vignoles IX”, P. Séjalon (dir.), Rapport d’opération-Fouille archéologique, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, tome I, volume 1 : les synthèses, pp.229-253 Forest 2012b : FOREST V. (2012) : Rapport intermédiaire d’étude archéozoologique. Nîmes-Mas de Vignoles XIV (Gard). in H. Pomarèdes (dir.), Rapport en cours, INRAP, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier Forest 2014 : FOREST V. (2014) : Étude archéozoologique. In “Aude (11), Trèbes, PRAE Paul Sabatier. Béragne 2 – Ferme à enclos républicaine. Un établissement rural à enclos fossoyé dans le Cracassès à la période tardo-républicaine (IIe s. – Ier s. av. J.-C.)”, P. Rascalou (dir.), Rapport final d’opération – Fouille d’opération, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.141-145 (196p.) Forest 2015a : FOREST V. (2015) : Rapport d’étude archéozoologique : ostéologie, conchyliologie. (du Ier s. ap. J.-C. aux temps modernes). In “Lodève. Immeuble Barral, groupe cathédrale.”, A. Bergeret, E. Léal (dir.), Rapport final d’opération-Fouille archéologique, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.310-321 (559p.) Forest 2015b : FOREST V. (2015) : Rapport d’étude archéozoologique : ostéologie, conchyliologie. Les Terrasses de Montfo – Magalas (Hérault). In O. Ginouvez (dir.), Rapport final d’opération-Fouille archéologique en cours, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier Forest 2015c : FOREST V. (2015) : Rapport d’étude archéozoologique : ostéologie. Rue de la Basse - Prades (Pyrénées-Orientales). in J. Kotarba (dir.), Rapport final d’opération - fouilles archéologiques en cours, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier Forest 2016 : FOREST V. (2016) : Étude archéozoologique : ostéologie, conchyliologie. 18, rue Émile Jamais – Nîmes (Gard). (période romaine et suivantes). In B Houix (dir.), Rapport final d’opération – fouille archéologique en cours, Inrap, Service Régional de l'Archéologie LanguedocRoussillon, Montpellier. Forest 2017a : FOREST V. (2017) : Étude archéozoologique : ostéologie, conchyliologie. Lattes – Fromigue (Hérault) (période romaine). in M. Compan (dir.), Rapport final d’opération – Fouille archéologique en cours, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier Forest 2017b : FOREST V. (2017) : Étude archéozoologique : conchyliologie, ostéologie. 12, rue Léopold Morice – Nîmes (Gard) (de la période antique à nos jours). in B. Houix (dir.), Rapport d’opération - Fouille archéologique en cours, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier. Forest 2017c : FOREST (V), MASSENDARI (J.) (coll.) : Éléments archéozoologiques. In “Nîmes - Parking Jean-Jaurès. L'histoire d'un quartier de Nemausus”, J.-Y. Breuil, B. Houix (dir.), Rapport d’opération. Fouille archéologique, tome III, volume 6, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, pp.241-272 Forest 2018a : FOREST V. (2018) : Étude archéozoologique diagnostique : ostéologie. Cournonterral – Les Joncasses 2 (Hérault). (période antique). In F. Mazière (dir.), Rapport final d’opération en cours, Inrap, Service Régional de l'Archéologie Occitanie, Montpellier Forest 2018b : FOREST V. (2018) : Étude archéozoologique : ostéologie, conchyliologie. Villevielle – Impasse de la Cure 1 (Hérault) (période antique). In B. Houix (dir.), Rapport final d’opération en cours, Service Régional de l'Archéologie Occitanie, Montpellier Forest 2019a : FOREST V. (2019) : Étude archéozoologique : ostéologie, conchyliologie. Castelnau-le-Lez – ZAC Eurêka (Hérault) (Du Ier au IIIe s. ap. J.-C.). In A. Briand (dir.),Rapport final d’opération en cours, Inrap, Service Régional de l'Archéologie Occitanie, Montpellier Forest 2019b : FOREST V. (2019) : Étude archéozoologique : ostéologie, conchyliologie. Lodève – Musée Fleury (Hérault) (périodes romaine, médiévale et moderne). In A. Bergeret (dir.),Rapport final d’opération en cours, Inrap, Service Régional de l'Archéologie Occitanie, Montpellier Forest 2019c : FOREST V. (2019) : Étude archéozoologique : ostéologie, conchyliologie. In “L’exploitation agricole antique du Mas de Fourques Ouest”, M. Ott (dir.),Rapport de fouille, Inrap, Service Régional de l'Archéologie Occitanie, Montpellier, Volume 1 –Volume 1, pp.201-303 Forest 2019d : FOREST V. (2019) : Étude archéozoologique : ostéologie, conchyliologie. Perpignan – Parc Ducup (Pyrénées-Orientales) (période romaine). In C. Da Costa (dir.),Rapport final d’opération en cours, Inrap, Service Régional de l'Archéologie Occitanie, Montpellier Forest 2019e : FOREST V. (2019) : Étude archéozoologique : ostéologie, conchyliologie. Sète – Rue des Mésanges (Hérault) (période romaine). In H. Pomarèdes (dir.),Rapport final d’opération en cours, Inrap, Service Régional de l'Archéologie Occitanie, Montpellier Forest 2019f : FOREST V. (2019) : Étude archéozoologique (ostéologie, conchyliologie). In « Le village de la Capelière en Camargue. Du début du Vesiècle avant notre ère à l’Antiquité tardive », C. Landuré, P. Arcelin, G. Arnaud-Fassetta (dir.), Bibliothèque d’Archéologie Méditerranéenne et Africaine, Presses Universitaires de Provence, Aix-Marseille, pp.277-320 Forest 2020a : FOREST (2020) : Étude archéozoologique diagnostique : ostéologie, conchyliologie, in « 18 bis, rue de la République Balaruc-leVieux (Hérault). Un silo de la fin de l’âge du Fer », A. Beylier, Document Final de Synthèse, p. 48-60. Forest 2020b : FOREST V. (2020) : Étude archéozoologique : ostéologie, conchyliologie. Castelnau-le-Lez – Mas de Caylus (Hérault) (période romaine républicaine). in G. Vacassy (dir.), Rapport de fouille en cours, Service Régional de l'Archéologie Occitanie, Montpellier. Forest 2020c : FOREST V. (2020) : Les restes archéozoologiques antiques : ostéologie et conchyliologie in « Impasse de la Cure 2, parcelle BV7 », B. Houix (dir.), Document Final de Synthèse, p . 216-241. Forest et Rodet-Belarbi 2002 : FOREST V., RODET-BELARBI I. (2002) : Etude archéozoologique. in "L'établissement rural de Soumaltre à Aspiran (Hérault)", R. Thernot, V. Bel, S. Mauné (dir.), Document Final de Synthèse, Afan, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier, vol.1, p.235-247 Guillaume et al 2007 : GUILLAUME M., DURAND C., FOREST V., PASSELAC M., YEBDRI E (2007) : Fontvieille à Soupex (Aude) - De la villa du Haut Empire au pigeonnier moderne. Rapport final d'opération de fouille archéologique en cours, Inrap, Service Régional de l'Archéologie Languedoc-Roussillon, Montpellier. Vermeulen et al 1997 : VERMEULEN C., FOREST V. et alii. (1997) : Lot 21. Mondragon. "Les Brassières". Vaucluse (84). Document final de synthèse, Service Régional de l'Archéologie Provence-Alpes-Côte d'Azur.