Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change Julia A. Clarkea,b,c,d, Daniel T. Ksepkac, Marcelo Stucchie, Mario Urbinaf, Norberto Gianninig,h, Sara Bertellii,g, Yanina Narváezj, and Clint A. Boyda aDepartment of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695; bDepartment of Paleontology, North Carolina Museum of Natural Sciences, 11 West Jones Street, Raleigh, NC 27601-1029; Divisions of cPaleontology and gVertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024; eAsociación para la Investigación y Conservación de la Biodiversidad, Los Agrólogos 220, Lima 12, Perú; fDepartment of Vertebrate Paleontology, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Lima 14, Perú; hProgram de Investigaciones de Biodiversidad Argentina (Consejo Nacional de Investigaciones Cientı́ficas y Técnicas), Facultad de Ciencias Naturales, Instituto Miguel Lillo de la Universidad Nacional de Tucumán, Miguel Lillo 205, CP 4000, Tucumán, Argentina; iThe Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007; and jDepartment of Geology, Centro de Investigación Cientı́fica y de Educación Superior de Ensenada, Kilometer 107 Carretera Tijuana–Ensenada, 22860 Ensenada, Baja California, México Aves 兩 evolution 兩 Peru 兩 fossil 兩 Bergmann’s rule C limate has been hypothesized to play a key role in evolutionary patterns of both living (1–5) and extinct penguins (4 –9). Whereas the earliest penguins appear ⬎60 Ma (10), extant lineages were recently proposed to originate in association with abrupt latest Eocene–Oligocene global cooling (⬇34 Ma; see refs. 11 and 12) and to undergo a major radiation and range expansion to low latitudes only during later Neogene cooling (4). Extant penguin species are broadly considered to be cool-adapted, and even equatorial species are sensitive to sea surface temperature increases associated with El Niño Southern Oscillation events (13). The new fossils are the first to indicate significant lowlatitude penguin diversity over a period characterized by one of the most important climatic shifts in earth history: the transition from peak temperatures in the pre-Oligocene greenhouse earth to the development of icehouse earth conditions (11, 12). The fossils reveal key data on the poorly known pre-Miocene history of penguins in South America (6, 9, 14). The fauna, from new Eocene localities in Peru, includes the two new species as well as additional material indicating the www.pnas.org兾cgi兾doi兾10.1073兾pnas.0611099104 presence of at least five penguin taxa (ref. 15 and undescribed specimens). The only other pre-Oligocene penguin fossil from South America is a partial hindlimb from the high-latitude southernmost tip of the continent, equivalent in age to the middle Eocene Peruvian specimens (14). Together, these two records constitute the earliest for penguins on the continent. Systematic Paleontology Aves Linnaeus, 1758 (sensu Gauthier, 1986). Neognathae Pycraft, 1900. Sphenisciformes Sharpe, 1891 (sensu Clarke et al., 2003). Perudyptes devriesi. New genus, new species. Holotype specimen. Museum of San Marcos University, Peru (MUSM) 889, comprising a skull, mandible, cervical vertebrae and ribs, humeri, left carpometacarpus, synsacrum, femora, right tibiotarsus, and left tarsometatarsus (Fig. 1). Etymology. ‘‘Peru’’ references the fossil provenance, and ‘‘dyptes’’ is Greek for diver. The species name ‘‘devriesi’’ honors Tom DeVries, whose dedicated work and longstanding collaboration in the Pisco Basin of Peru made possible the discovery of the new localities and species. Locality and age. MUSM 889 is from a coarse-grained, thick-bedded, siliciclastic sandstone exposed at Quebrada Perdida (14°34⬘S, 75°52⬘W), Department of Ica, Peru, identified to the basal portion of the middle to late Eocene Paracas Formation (16). The presence of the gastropod Turritella lagunillasensis in correlative sandstone beds confirms the assignment of the holotype locality to the basal Paracas Formation (16, 17), as does the discovery of late middle Eocene radiolarians (Cryptocarpium ornatum, Lithocyclia aristotelis, and Lithocyclia ocellus) in tuffaceous fine-grained sandstones much higher in the section (⬇42 Ma).k Author contributions: J.A.C. and D.T.K. designed research; J.A.C., D.T.K., M.S., M.U., N.G., S.B., Y.N., and C.A.B. performed research; J.A.C., D.T.K., M.S., N.G., S.B., Y.N., and C.A.B. analyzed data; and J.A.C., D.T.K., M.S., N.G., S.B., and C.A.B. wrote the paper. The authors declare no conflict of interest. This article is a PNAS Direct Submission. R.E.F. is a guest editor invited by the Editorial Board. Abbreviation: MUSM, Museum of San Marcos University, Peru. dTo whom correspondence should be addressed. E-mail: julia㛭clarke@ncsu.edu. kDeVries, T. J., Narváez, Y., Sanfilippo, A., Malumian, N., Tapia, P., XIII Congreso Peruano de Geologı́a, Oct. 17–20, 2006, Lima, Perú (ext. abstr.). This article contains supporting information online at www.pnas.org/cgi/content/full/ 0611099104/DC1. © 2007 by The National Academy of Sciences of the USA PNAS 兩 July 10, 2007 兩 vol. 104 兩 no. 28 兩 11545–11550 GEOLOGY New penguin fossils from the Eocene of Peru force a reevaluation of previous hypotheses regarding the causal role of climate change in penguin evolution. Repeatedly it has been proposed that penguins originated in high southern latitudes and arrived at equatorial regions relatively recently (e.g., 4 – 8 million years ago), well after the onset of latest Eocene/Oligocene global cooling and increases in polar ice volume. By contrast, new discoveries from the middle and late Eocene of Peru reveal that penguins invaded low latitudes >30 million years earlier than prior data suggested, during one of the warmest intervals of the Cenozoic. A diverse fauna includes two new species, here reported from two of the best exemplars of Paleogene penguins yet recovered. The most comprehensive phylogenetic analysis of Sphenisciformes to date, combining morphological and molecular data, places the new species outside the extant penguin radiation (crown clade: Spheniscidae) and supports two separate dispersals to equatorial (paleolatitude ⬇14°S) regions during greenhouse earth conditions. One new species, Perudyptes devriesi, is among the deepest divergences within Sphenisciformes. The second, Icadyptes salasi, is the most complete giant (>1.5 m standing height) penguin yet described. Both species provide critical information on early penguin cranial osteology, trends in penguin body size, and the evolution of the penguin flipper. ENVIRONMENTAL SCIENCES Edited by R. Ewan Fordyce, University of Otago, Dunedin, New Zealand, and accepted by the Editorial Board May 21, 2007 (received for review December 14, 2006) Fig. 1. Holotype of P. devriesi (MUSM 889). (a) Skull in dorsal view. (b) Skull in left lateral view. (c) Left dentary in medial view. (d) Skull in ventral view. (e) Right humerus in anterior and posterior views. ( f) Right humerus in proximal view. (g) Right humerus in distal view. (h) Left carpometacarpus in distal view. (i) Left carpometacarpus in ventral and dorsal views. (j) Synsacrum, ilia, and left femur in dorsal view. (k) Right femur in posterior and anterior views. (l) Left tarsometatarsus in plantar and dorsal views. All to same scale except j (scale for j is at lower left); f, g, and h are enlarged in the line drawings to show detail. Anatomical abbreviations: ac, acetabulum; art, articular surface for antitrochanter; at, antitrochanter; cb, coracobrachialis insertion; d, depression on lingual surface of dentary; f, femur; fmn, articular facet for first digit of metacarpal III; fmj, articular facet for first digit of metacarpal II; ld, scar for latissimus dorsi; mtr, middle trochlear ridge; nc, nuchal crest; po, postorbital process; pp, pisiform process; ps, expansion of parasphenoid; ptr, posterior trochlear ridge; sc, scar for supracoracoideus; sf, fossa for salt gland; sp, supracondylar tubercle. Diagnosis. P. devriesi is diagnosed by the following four autapo- morphies relative to all other Sphenisciformes: (i) postorbital process directed anteroventrally; (ii) marked anterior expansion of the parasphenoid rostrum; (iii) posterior ridge forming the humeral scapulotriceps groove projects distal to the middle ridge and is conformed as a large, broadly curved surface; and (iv) femur with a convex articular surface for the antitrochanter. Additional differential diagnosis is given in supporting information (SI) Appendix. Description. Deep temporal fossae excavate the skull roof, and the frontal is beveled for a supraorbital salt gland. A pronounced sagittal crest meets the nuchal crest at a 90° angle. The postorbital process is directed anteroventrally, unlike the ventral orientation in other penguins. The nasal–premaxilla suture is obliterated. The left mandible indicates a straight, elongate beak with a short symphysis. A lingually directed flange from the dorsal margin expands to create a flat surface, a feature previously unknown in penguins. An elongate depression on the lingual surface of the dentary is similar to a feature present in Gaviidae (loons) and to an Eocene sphenisciform mandible (18); extant penguins lack this morphology. The humerus is flattened and pachyostotic. The dorsal tubercle is nearly level with the apex of the head. The shaft is narrow and lacks notable distal expansion. The coracobrachialis impression is developed as a shallow oblong fossa, and the tricipital fossa is deep, undivided, and apneumatic. The supracoracoideus insertion scar is elongate and well separated from the small, 11546 兩 www.pnas.org兾cgi兾doi兾10.1073兾pnas.0611099104 circular latissimus dorsi insertion scar. A compact dorsal supracondylar tubercle is present, a feature absent in all other penguins except the basal taxon Waimanu (10). The ulnar condyle is damaged, but a wide shelf-like surface is preserved adjacent to the posterior margin of the condyle. Metacarpal II is anteriorly bowed, with a broad anterior margin unlike the compressed sharp edge present in extant penguins. The pisiform process is a low but distinct ridge. The articular facet for the phalanx of metacarpal III is plesiomorphically subtriangular. The sutures between the ilia and the sacrum are open. The femur has a very weak trochanteric crest and is nearly straight for its preserved length. A proximally placed fibular crest and narrow supratendinal bridge are discernable on the tibiotarsus. The tarsometatarsus is short, with a straight metatarsal IV and a shallow dorsal sulcus between metatarsals II and III. The medial proximal vascular foramen and the distal vascular foramen are absent. Icadyptes salasi. New genus, new species. Holotype specimen. MUSM 897, comprising a skull, axis, and eight additional cervical vertebrae, partial right and left coracoids, cranial end of the left scapula, left humerus, radius, ulna, proximal carpals, carpometacarpus, and phalanges (Fig. 2). Etymology. ‘‘Ica’’ refers to the Department of Ica, ‘‘dyptes’’ is Greek for diver. ‘‘Salasi,’’ honors Rodolfo Salas for his important contributions to vertebrate paleontology in Peru. Locality and age. MUSM 897 is from a tuffaceous, diatomaceous, fine-grained sandstone that is part of the basal transgressive Clarke et al. ENVIRONMENTAL SCIENCES sequence of the Otuma Formation (16)l exposed in the lower Ullujaya Valley of the Rio Ica, Department of Ica (14°37⬘S, 75°37⬘W). The fossil-bearing unit lies 70 m above an angular unconformity marking the base of the depositional sequence. Specimens of the gastropods Peruchilus culberti and Xenophora carditigera establish a late-middle to late Eocene age for this sequence, whereas microfossils from a contiguous and continuous section indicate a more exact age of ⬇36 Ma for the strata containing MUSM 897.l Additionally, ash beds collected near the base of the same depositional sequence 5 km southwest across the Rı́o Ica yielded 40Ar/39Ar dates of 37.2 and 36.5 Ma, whereas an ash bed higher in the section, correlated with beds above the horizon bearing MUSM 897, yielded an age of 35.7 Ma.k Diagnosis. I. salasi possesses four proposed autapomorphies relative to all other penguins: (i) a beak forming more than two-thirds of the skull length, (ii) fusion of the premaxillae and palatines, (iii) axis with an elongate hypophysis terminating in a greatly mediolaterally expanded disk-like plate, and (iv) a deep ovoid fossa on the lateral surface of the acrocoracoid process. I. salasi is also differentiated from all other penguins by the following combination of postcranial characters: humerus with a straight, broad shaft (midshaft width/length ⫽ 0.22); metacarpal I with a flat carpal trochlea and distinct distal terminus; and lDeVries, T. J., XII Congreso Peruano de Geologı́a, Oct. 26 –29, 2004, Lima, Perú (ext. abstr.). Clarke et al. metacarpals II and III subequal in distal extent. Additional differential diagnosis is given in SI Appendix. Description. The skull of I. salasi is the first complete specimen reported for a basal penguin. Striking is the hyperelongate, spear-like beak, unlike that of any previously known extinct or extant penguins. Fusion of the palatal elements and premaxillae creates a powerfully constructed upper jaw with a flat ventral surface bounded by lateral ridges and inscribed with reticulate vascular sucli. Similar vascular texturing is seen in Sulidae (boobies and gannets) but is not present in other penguins, suggesting a distinct rhamphotheca in I. salasi. The mandible has an extensive symphysis with a corresponding flat dorsal surface. The cranium is extremely narrow, with deep temporal fossae meeting at a midline sagittal crest. A supraorbital shelf for the salt gland is present. The external nares extend posterior to the anterior margin of the antorbital fenestra. The jugal bar is straight. The pterygoid is rod-like, lacking the fan-like anterior expansion present in Spheniscidae. The otic process of the quadrate is shorter than the optic process. The quadrate shaft bears a tubercle for the adductor mandibulae externus attachment that abuts the squamosal capitulum. A retroarticular process is present. The axis is mediolaterally compressed and elongate compared with extant penguins, and the remaining cervical vertebrae are robust, particularly compared with the narrow skull. The coracoids preserve deep scapular cotylae, and the scapula shares the expanded proximal end present in extant penguins. The humeral supracoracoideus scar parallels the long axis of its shaft, and the PNAS 兩 July 10, 2007 兩 vol. 104 兩 no. 28 兩 11547 GEOLOGY Fig. 2. Holotype of I. salasi (MUSM 897). (a) Skull in lateral view. (b) Mandible in dorsal view. (c) Left quadrate in lateral view. (d) Left humerus in posterior and anterior views. (e) Left ulna in ventral view. ( f) Left radius in ventral view. (g) Left carpometacarpus and phalanges in ventral view. (h) Left coracoid in ventral view. All are to the same scale except c, which is enlarged to show detail. Anatomical abbreviations: ac, acrocoracoid process; af, anteorbital fenestra; am, tubercle for m. adductor mandibulae externus; atr, anterior trochlear ridge; cb, coracobrachialis insertion; cf, ovoid coracoid fossa; fa, distal facet of first metacarpal; j, jugal; lc, lateral cotyle of mandible; mc, medial cotyle of mandible; mtr, middle trochlear ridge; n, nares; ol, olecranon; ptr, posterior trochlear ridge; qc, quadratojugal cotyle; qt, tubercle on optic process; sc, scar for supracoracoideus; sf, fossa for salt gland; ss, sesamoid of m. scapulotriceps tendon; tf, temporal fossa; tr, tricipital fossa; ts, transverse sulcus. Fig. 3. Recovered penguin phylogenetic relationships, including placement of new species P. devriesi and I. salasi (in red) and showing stratigraphic and latitudinal distribution of species against ␦18O values as a proxy for changes in global temperature over the last 65 Ma (from ref. 12). The strict consensus cladogram of the four most parsimonious trees (4,356 steps) is shown. Black bars indicate stratigraphic range. No neospecies has a fossil record extending beyond 11548 兩 www.pnas.org兾cgi兾doi兾10.1073兾pnas.0611099104 Clarke et al. Body Size Evolution The phylogenetic results are consistent with a single origin of extremely large size in the penguin lineage (in contrast to ref. 27) by the early Eocene and retained in Icadyptes. Giant size persisted into the Oligocene (6, 19) across the Eocene– Oligocene climate transition (Fig. 3). Intriguingly, over late Tertiary global cooling, the average size of penguins has become smaller (Fig. 3). Icadyptes was far larger than any living penguin, whereas Perudyptes was approximately the size of the extant king penguin. Compared with the three largest previously described extinct taxa, the I. salasi holotype humerus is ⬇5 mm shorter than the largest exemplars of Pachydyptes ponderosus (19) and Anthropornis nordenskjoeldi (8, 28) and exceeds the largest of Palaeeudyptes klekowskii (28) by ⬇9 mm. Regressions based on hindlimb measurements estimated the standing height and mass of A. nordenskjoeldi (1.66–1.99 m and 81.7–97.8 kg, respectively) and of P. klekowskii (1.47–1.75 m and 56.0–65.7 kg, respectively) (29). Humeral dimensions indicate that the holotype individual of I. salasi would be intermediate in size between these two taxa, yielding a conservative minimum standing height of 1.5 m. When the body size of low-latitude I. salasi is compared with all higher latitude taxa with overlapping observed and inferred stratigraphic ranges (Fig. 3), I. salasi is larger or approximately the same size. Although body size distribution in birds has been suggested to be largely consistent with the proposed biological law ‘‘Bergmann’s rule,’’ relating cooler temperatures and higher latitudes with large body size (e.g., refs. 30 and 31; although, see ref. 32), the warm water foraminiferan Asterigerina has been recovered in matrix associated with giant-form P. ponderosus, a form approximately the same size as Icadyptes (19). Giant size in the penguin lineage does not appear to be correlated with either cooler temperatures or higher latitudes. A period of increased late Eocene upwelling (11) and ocean productivity that would have impacted the Peruvian coast (26) should be investigated as the Pleistocene (6). Extinct taxa are indicated with a †. Branch color indicates the latitude of extant taxon breeding territories and the paleolatitude of fossil taxon localities, with ancestral latitude ranges reconstructed along internal branches from downpass optimization: 0 –30°S latitude (yellow), 30 – 60° (green), and 60 –90° (blue). Silhouettes reflect body size; small silhouettes indicate taxa smaller than extant Aptenodytes patagonicus (king penguin), medium silhouettes indicate taxa intermediate between A. patagonicus and Aptenodytes forsteri (emperor penguin), and large silhouettes indicate taxa larger than A. forsteri. The plot of mean ␦18O values and estimated mean ocean water temperature scale (only valid for an ice-free ocean, preceding major Antarctic glaciation at ⬇35 Ma) are from ref. 12 and give an indication of changing conditions across the Cenozoic. Clarke et al. PNAS 兩 July 10, 2007 兩 vol. 104 兩 no. 28 兩 11549 ENVIRONMENTAL SCIENCES Penguin Evolution and Cenozoic Climate Change Phylogenetic results from analysis of the largest data set yet compiled for penguins, following the combined analysis methods of ref. 20, identify P. devriesi as a deep divergence within penguins and I. salasi as part of a paraphyletic assemblage of giant Eocene–Oligocene taxa closer to Spheniscidae, the penguin crown clade (Fig. 3). Relationships among extant genera are those recovered from less inclusive molecular data sets in maximum-likelihood and Bayesian analyses (4). The Peruvian species inform estimates of Pacific biotic connections during greenhouse-to-icehouse earth transition. Two equatorial ingressions by Paleogene penguins are supported (Fig. 3). On the basis of ancestral area reconstructions (see SI Appendix), one dispersal from Antarctic regions is inferred by the middle Eocene and a second from New Zealand by the late Eocene. Whether this biogeographical pattern reflects proposed, but controversial, late Eocene (⬇41 Ma; ref. 21) beginnings for reorganization of southern ocean circulation patterns and isolation of Antarctica (21) deserves further investigation. We find no fossil evidence for the extant penguin radiation, Spheniscidae, earlier than a species of Spheniscus ⬇8 million years in age (22); all pre-late Miocene taxa are placed outside this radiation (Fig. 3). By contrast, molecular sequence divergence estimates identify the origin of this radiation at 40 Ma (4). Although there is an extensive sphenisciform fossil record from multiple continents between 40 and 8 Ma, no fossil from this interval has been placed as part of Spheniscidae (refs. 6 and 23 and Fig. 3). Calculations from modified scripts for MSM*range (ref. 24 and see Materials and Methods) indicate that accommodation of the molecular divergence estimates would require an additional 164.1–334.2 million years of missing fossil record (a 172–205% increase) compared with the inferred missing record (‘‘ghost lineages’’) given only cladogram topology and fossil ages. The fossil record of penguins is approximately three times as incomplete when divergence dates are required to be true and would be strikingly biased toward recovery of only stem taxa. Extant penguin diversification may be related to later Neogene global cooling phases (4, 12), but there is no fossil evidence to support a crown radiation in the Paleogene concomitant with the initiation of the circum-Antarctic current, initial onset of Cenozoic global cooling, or at the proposed extinction of giant penguins (in contrast to ref. 4). An Oligocene fossil cited as representing the extant genus Eudyptula in support of a Paleogene crown radiation (4) is not assignable to that genus (6). Although stratigraphic data can only falsify a divergence date when a fossil discovery is older than estimated, the large amount of implied missing fossil record suggests that proposed crown penguin divergence times may be too old. Future analyses using calibration points within the crown clade (e.g., refs. 22 and 25) could improve the fit of these estimates. Based on inferred patterns linking latitudinal expansion, increases in extant species diversity, and phases of Cenozoic global cooling, it was predicted (4) that global warming could trigger an opposite pattern in the penguin lineage, with equatorial species retreating to higher latitudes and high-latitude species facing extinction. This prediction is supported by data on some extant species (1, 3). The new Peruvian species indicate that early in penguin evolution there was a more complex relationship between global temperature and diversity than previously recognized. Additional factors such as upwelling (26) and ocean circulation patterns (6, 20, 23) were also critical in the evolution of the penguin lineage. Because the Peruvian species are members of the stem sphenisciform lineage and current global warming would be on a distinct, significantly shorter time scale, the data from these basal forms should not be used to refute predictions of changes in extant penguin distribution with continued warming. Given the different interactions between climate and distribution seen in basal penguins and in extant species, the physiological and ecological factors that could drive the response of extant penguins to climate change (1, 3, 13) may well be restricted to the crown clade. GEOLOGY latissimus dorsi insertion is displaced distally to near midshaft. The tricipital fossa is undivided. Two distal trochlea are present for the humerotriceps and scapulotriceps sesamoids. The ulnar olecranon process is tab-like and proximally located, as in Waimanu (10) and Palaeeudyptes (19). The radius bears a roughened anteroproximal brachialis insertion surface but lacks a proximally directed process on the anterior border. Metacarpals II and III are equal in distal extent as in some other Paleogene species, whereas in extant and most extinct species metacarpal III extends farther. A free alular digit is absent. Phalanx II-1 is longer than phalanx III-1, unlike in extant penguins in which these two digits are subequal in length. a potentially important factor driving low-latitude penguin species diversity and body size. Implications for the Evolution of Penguin Morphology The Peruvian fossils provide insight into early penguin cranial anatomy and the evolution of the penguin flipper apparatus. An elongate, powerfully constructed beak unknown in extant penguins is present in both Perudyptes and Waimanu (10) and, in an extreme form, in Icadyptes. This morphology can now optimized as ancestral for penguins. Undescribed long-billed Oligocene fossils have also been reported (6, 10), revealing that this morphology was retained for a significant portion of early penguin evolution and through the greenhouse-to-icehouse transition (12). Perudyptes displays a unique combination of traits that fills an important gap between the wing morphology of the basal-most penguin, Waimanu, and living penguins. The extant penguin wing is highly modified into a stiffened, paddle-like structure equipped with a greatly reduced set of intrinsic wing muscles (33) and exhibiting the lowest degree of intrinsic joint mobility of any extant avian group (34). The presence of a conspicuous dorsal supracondylar tubercle and distinct pisiform process in Perudyptes are consistent with retention of functioning major intrinsic wing muscles whose attachment surface (extensor carpi radialis) and pulley-like guide (flexor digitorum profundus) these processes represent. In penguins closer to and including the crown clade, the dorsal supracondylar tubercle is absent, with indication of muscle origin reduced to a weak, flat scar. The pisiform process is reduced to a barely perceptible ridge. Like other basal penguins, Perudyptes retains a prominent ulnar condyle that potentially permitted greater flexion at the humerus/ulna joint, although the large shelf adjacent to the condyle would restrict flexion during the flight downstroke (23). New data from the Peruvian fossils invite further biomechanical research to discern implications for locomotor differences and feeding ecology in basal penguins. Conclusions With the discovery of the new Peruvian species, penguins show a much more complex relationship with climate factors early in their evolution. Inference of ancestral vs. extant ecologies within a lineage, and attention to when in that lineage derived characteristics arose, are key to qualifying interpretations relating past biotic events causally to climate shifts, as well as to informing predictions for future responses to change. Although molecular 1. Forcada J, Trathan PN, Reid K, Croxall JP (2006) Glob Change Biol 12:411– 423. 2. Croxall JP, Trathan PN, Murphy EJ (2002) Science 297:1510–1514. 3. Barbraud C, Weimerskirch H (2001) Nature 411:183–186. 4. Baker AJ, Pereira SL, Haddrath OP, Edge KA (2006) Proc R Soc London Ser B 212:11–17. 5. Williams TD (1995) The Penguins (Oxford Univ Press, Oxford). 6. Fordyce RE, Jones CM (1990) in Penguin Biology, eds Davis LS, Darby JT (Academic, San Diego), pp 419–446. 7. Jenkins RJF (1974) Paleontology 17:291–310. 8. Simpson GG (1971) Bull Am Mus Nat Hist 144:319–378. 9. Simpson GG (1946) Bull Am Mus Nat Hist 87:7–99. 10. Slack KE, Jones CM, Ando T, Harrison GL, Fordyce RE, Arnason U, Penny D (2006) Mol Biol Evol 23:1144–1155. 11. Tripati A, Backman J, Elderfield H, Ferretti P (2005) Nature 436:341–346. 12. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Science 292:686–693. 13. Boersma PD (1998) Condor 100:245–253. 14. Clarke JA, Olivero EB, Puerta P (2003) Am Mus Novit 3423:1–18. 15. Acosta Hospitaleche C, Stucchi M (2005) Revista de la Sociedad Española de Paleontologı́a 20:1–6. 16. DeVries TJ (1998) S Am Earth Sci 1:217–231. 11550 兩 www.pnas.org兾cgi兾doi兾10.1073兾pnas.0611099104 divergence dating approaches offer great insight into the timing and potential causal factors in lineage diversification, case studies evaluating groups with a comparably rich record offer the only available test to these scenarios. In the case of the penguin lineage, a much more complex paleobiogeographical pattern and grossly different timing of key origin and radiation events are indicated, at odds with current divergence dating estimates. Materials and Methods Phylogenetic Analysis and Ancestral Area/Latitude Reconstruction. The data set comprised 194 morphological characters sampled for 43 fossil and living penguin taxa and ⬇6.5 kbp from five genes (RAG-1, 12S, 16S, COI, and cyt-b) for all extant penguins. Direct optimization methods and search strategy follow ref. 20, with 200 tree bisection and reconnection replicates conducted in POY (version 3.0.11; American Museum of Natural History). See SI Data Set and SI Appendix for matrix, GenBank accession numbers, Bremer support values, area and latitude categories, and references for fossil ages. Missing Fossil Range Calculation. MSM*range (24), a method used to compare the temporal order of successive branching events with the age of appearance of terminal taxa in the stratigraphic record, was adapted to analyze the effects of requiring the divergence times estimated from calibrated molecular sequence data (4). Ancestral nodes, and associated inferred divergence dates, were incorporated into the analyzed Newick tree. The range of missing record reflects the iterative first appearance datum sampling procedure used by MSM*range and different resolutions of polytomies in our consensus tree. We thank T. DeVries for stratigraphic data and for many contributions to Peruvian geology and paleontology; R. Salas, N. Valencia, D. Omura, W. Aguirre, and E. Dı́az, for fieldwork assistance and fossil preparation; L. Brand and C. Aguirre for contributions to fieldwork; K. Lamm for illustrations; T. Ando and R.E.F. for information on Waimanu; P. Goloboff for supercluster access; and the editor and two anonymous reviewers for comments that improved our manuscript. We are grateful for support provided by the National Science Foundation Office of International Science and Engineering, National Geographic Society Expeditions Council, North Carolina State University, and North Carolina Museum of Natural Sciences (J.A.C.); The Frank M. Chapman Memorial Fund, The Doris O. and Samuel P. Welles Research Fund, and American Museum of Natural History Division of Paleontology (D.T.K.); and the National Science Foundation Assembling the Tree of Life Project: Archosaur Phylogeny. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. Rivera R (1957) Bol Soc Geol Perú 32:165–220. Olson SL (1985) Avian Biol 8:79–238. Marples BJ (1952) N Z Geol Surv Paleontol Bull 20:1–66. Bertelli S, Giannini NP (2005) Cladistics 21:209–239. Scher HD, Martin E (2006) Science 312:428–430. Stucchi M (2002) Bol Soc Geol Perú 94:17–24. Ksepka DT, Bertelli S, Giannini NP (2006) Cladistics 22:412–441. Pol D, Norell M (2006) Syst Biol 55:512–521. Walsh SA, Suárez ME (2006) Hist Biol 18:115–126. Hartley AJ, Chong G, Houston J, Mather AE (2005) J Geol Soc (London) 162:421–424. Tambussi CP, Reguero MA, Marenssi SA, Santillana SN (2005) Geobios 38:667–675. Jadwiszczak P (2006) Polish Polar Res 27:3–62. Jadwiszczak P (2001) Polish Polar Res 22:147–158. Ashton KG (2002) Global Ecol Biogeogr 11:505–523. Meiri S, Dayan T (2003) J Biogeogr 30:331–351. Zink RM, Remson JV, Jr (1986) in Current Ornithology, ed Johnston RF (Plenum, New York), Vol 4, pp 1–69. Raikow RJ, Bicanovsky L, Bledsoe AH (1988) Auk 105:446–451. Schreiweis DO (1982) Smithsonian Contrib Zool 341:1–46. Clarke et al. SI Appendix Additional Differential Diagnosis for Perudyptes devriesi and Icadyptes salasi. Multiple features of the skulls of P. devriesi and I. salasi are unknown in any other penguins and are currently supported as apomorphies of these species (i.e., those given in the main text). However, cranial material is rare for fossil penguin taxa, and additional differential diagnosis is desirable. The tarsometatarsus and humerus are traditionally considered among the most diagnostic bones in the penguin skeleton, and either one or both of these elements is included in the hypodigm of all named species, with the exception of the fossil crown species Pygoscelis calderensis. These two elements are thus given particular attention below. The humerus of P. devriesi differs from all described penguin humeri by the apomorphies described in the main text. P. devriesi can be additionally differentiated from Mesetaornis polaris, Marambiornis exilis, Delphinornis larseni, Delphinornis gracilis, Delphinornis arctowski, Duntroonornis parvus, and Korora oliveri (the humerus is unknown for these taxa) by the absence of the medial proximal vascular foramen of the tarsometatarsus as well as by much larger size. The absence of the medial proximal vascular foramen also differentiates P. devriesi from all extant species, Waimanu manneringi, Waimanu tuatahi, Anthropornis nordenskjoeldi, Anthropornis grandis, Paraptenodytes antarcticus, Archaeospheniscus lopdelli, and Archaeospheniscus wimani. A penguin from Tierra del Fuego (CADIC P-21) approximately the same age as P. devriesi (6) remains unnamed, nevertheless it should be noted that P. devriesi differs from this fossil by features of the femur listed in the main text. For example, by contrast to the femoral morphologies described and figured for P. devriesi, CADIC P-21 possesses a conspicuously concave antitrochanteric articular surface and exhibits greater projection of the trochanteric crest. Given the phylogenetic placement and large size of I. salasi, comparisons with Pachydyptes, Anthropornis, and specimens traditionally assigned to the genus Palaeeudyptes are most relevant. I. salasi differs from Pachydyptes ponderossus in possessing a significantly more slender humerus (midshaft length/width = 0.22 for I. salasi, 0.26 for P. ponderossus). Metacarpal I of I. salasi ends in a distinct flat surface, whereas metacarpal I of P. ponderossus appears to slope gradually to the level of metacarpal II, without a distinct flat distal end. I. salasi differs from all specimens traditionally assigned to the genus Palaeeudyptes (Palaeeudyptes klekowskii, Palaeeudyptes gunnari and New Zealand specimens traditionally assigned to Palaeeudyptes antarcticus) in two features of the humerus. The coracobrachialis caudalis scar (located on the proximal lip of the tricipital fossa) is significantly less distally directed in I. salasi, and the shaft of the humerus is much wider in I. salasi than in all of these specimens. Additionally, I. salasi differs from the New Zealand specimens OM C.47:23 and C.47:25 (referred to Palaeeudyptes) in possessing an ulna with a more proximally placed olecranon process and a carpometacarpus with metacarpal I ending in a distinct facet. The humerus of I. salasi differs from humeri assigned to A. nordenskjoeldi and A. grandis by possessing a nearly straight, as opposed to strongly sigmoid, shaft. Further, Icadyptes and these species are distantly related in the results of the phylogenetic analysis. Notes on the Phylogenetic Data Set and Ancestral Area Catagories. The data set includes 17 extant penguin species (plus one distinct subspecies) and 26 fossil taxa, evaluated for 194 morphological characters. The data set also includes ≈6.5kbp from one nuclear and four mitochondrial genes (RAG-1, 12S, 16S, COI, and cyt-b) for all extant penguins. This study adds eight ingroup and two outgroup operational taxonomic units and 15 morphological characters to previously published penguin data sets (1–3). Codings for 53 of the 58 operational taxonomic units were taken from direct observation of specimens, and codings for M. polaris, M. exilis, Eretiscus tonnii, W. manneringi, and W. tuatahi were obtained from the literature. Three specimens previously assigned to P. antarcticus (4) or Palaeeudyptes sp. (5) were treated as separate terminals because they preserve combinations of characters that suggest they are not monophyletic. Procellariiformes (12 species) and Gaviiformes (2 species) were used as outgroups, because these higher taxa have been consistently identified as the closest relatives of Sphenisciformes in analyses of both morphological and molecular data (reviewed in refs. 1, 2, and 6; although, see ref. 7). Sequence treatment follows (1), with molecular and morphological transformations weighted equally. Search refinements were conducted on the results (tree fusing; ref. 8), and Bremer support values were calculated (see SI Fig. 4 below). The phylogenetic signal in the molecular data is robust to the choice of alignment and optimization criteria. To reconstruct ancestral biogeographic distributions, the Southern Hemisphere was divided into nine discrete areas representing the breeding ranges of extant penguins (obtained from ref. 9), and each of these areas was assigned a character state for a single geographic character. These areas are (i) the Galapagos Islands, (ii) South African coast, (iii) Tristan da Cunha and Gough, (iv) Bouvet Island, (v) Kerguelen and other Indian Ocean islands, (vi) Australia/New Zealand, (vii) Antarctic Peninsula, (viii) Scotia Arc, and (ix) shores of the Antarctic Continent (for area definition criteria, see ref. 1). Each extant taxon was assigned as many states as required to represent its breeding territory. Extinct taxa were scored based on known fossil range (see SI Table 1, below), with the assumption that the localities of a fossil taxon represented, or at least included, in its breeding territory. This geographic character was mapped onto the strict consensus cladogram from the phylogenetic analysis by using a single downpass optimization, consistent with a dispersal–vicariance interpretation of historical biogeographic reconstruction (10). In this way, ancestral distributions can be reconstructed. The same methodology was applied to reconstruct the latitudinal distributions presented in Fig. 3. In this case, a geographical character was created with three states: Antarctic (encompassing 60–90°S latitude), Subantarctic (30–60°), or Subtropical/Tropical (0–30°). Extinct taxa were scored based on known fossil range, corrected for differences in paleolatitude. GenBank Accession Numbers and Authorship of Sequences Used 12S rDNA: (11): DQ137187, DQ137190-1, DQ137193-4, DQ137196-202, DQ137205. (12): U88007, U88024. García-Moreno et al. (unpublished): AY139621, AY139623, AY139630. (13):X82517-8, X82522-3, X82533. (14): AY158677; NC_004538. (15): AF173573, AF173577-8. 16S rDNA: (11): DQ137147-62, DQ13714765-6. (14): AY158677, AY293618. cytochrome b: (11): DQ137207-10, DQ137215-20, DQ13723-5, NC_004538; (16): U48943, U48955. (17): AF076051-2, AF076046, AF076060, AF076062, AF076064, AF076068, AF076076, AF076089-90, U74335, U74350, U74353. (18): AF158250. COI: (11): DQ137167-72, DQ137174-86 (14): NC_007172. (19): AY666477, AY666284. RAG-1: (10): DQ137230-3, DQ137235-47. Fig. 4. Primary phylogenetic analysis results. A strict consensus cladogram (four trees; tree length = 4,356 steps) with Bremer support values and ancestral area reconstructions from the biogeographical analysis. Area abbreviations: AC, shores of the Antarctic continent; AF, South African coast; AP, Antarctic Peninsula; B, Bouvet Island; G, Galapagos Islands; I, Kerguelen and other Indian Ocean islands; NZ, Australia/New Zealand; S, Scotia Arc; and TG, Tristan da Cunha and Gough. Table 1. Locality and Age Data Used to Construct Fig. 3 Taxon Locality Age Citations Anthropornis grandis Seymour Island, Antarctica mid-latest Eocene 20 Latest Eocene 20 4, 21, 22 Telm 4-7 of La Meseta Fm. Anthropornis Seymour Island, Antarctica nordenskjoeldi Telm 7 of La Meseta Fm. Archaeospheniscus Duntroon, New Zealand Late Oligocene lopdelii Kokoamu Greensand (Duntroonian stage) Archaeospheniscus Duntroon, New Zealand Late Oligocene lowei Kokoamu Greensand (Duntroonian stage) Delphinornis larseni Seymour Island, Antarctica mid-latest Eocene 4, 21, 22 20 Telm3-7 of La Meseta Fm. Eretiscus tonnii Chubut Valley, Argentina early Miocene 24 Gaiman Fm. (formerly referred to as ‘Patagonia Fm.’) Marplesornis Motunau, North Canterbury, most likely Pliocene novaezealandiae New Zealand (Waitotaran stage) Marambiornis exilis Seymour Island, Antarctica latest Eocene 25, 26 20 Telm 7 of La Meseta Fm. Marambiornis exilis Seymour Island, Antarctica latest Eocene 20 Telm 7 of La Meseta Fm. Pachydyptes Fortification Hill, Oamau, ponderosus New Zealand latest Eocene 21, 22 mid-latest Eocene 20 latest Eocene 20 late Eocene 21, 22 21, 22 Ototara Limestone Palaeeudytpes Seymour Island, Antarctica gunnari Telm3-7 of La Meseta Fm. Palaeeudyptes Seymour Island, Antarctica klekowskii Telm 7 of La Meseta Fm. Palaeeudyptes sp. Burnside, Dunedin C48:73-81 New Zealand Burnside Mudstone Palaeeudyptes sp. Duntroon, New Zealand late Oligocene C47:23 Kokoamu Greensand (Duntroonian stage) Palaeeudyptes sp. Duntroon, New Zealand late Oligocene C47:25 Kokoamu Greensand (Duntroonian stage) Palaeospheniscus Chubut and Santa Cruz, early-middle patagonicus Argentina, Gaiman Fm. Miocene 21, 22 26, 27 (formerly referred to as ‘Patagonia Fm.’) Peru, Chilcatay Fm. Paraptenodytes Chubut Valley, Argentina antarcticus lower and middle Patagonia Fm. early Miocene 26 Platydyptes amiesi Platydyptes marplesi Hakataramea Valley, late Oligocene South Canterbury, (Duntroonian or New Zealand Waitakian stage) Duntroon, New Zealand late Oligocene (recorded Oamaru, but (Duntroonian stage) 21, 22 21, 22 believed to be Wharekuri) Oamaru, New Zealand late Oligocene 21, 22 Spheniscus Pisco Basin, Peru late Miocene to 28 megaramphus Pisco Fm. early Pliocene Spheniscus urbinai Pisco Basin, Peru late Miocene to Pisco Fm. early Pliocene Waimanu Waipara River, early Paleocene 14 manneringi New Zealand late Paleocene 14 Platydyptes novaezealandiae 29 Basal Waipara Greensand Waimanu tuatahi Waipara River, New Zealand middle to upper Waipara Greensand Table 2. Measurements (mm) of P. devriesi (MUSM 889) and I. salasi (MUSM 897) P. devriesi I. salasi Total length - ~318 Beak - ~230 Diameter of scapular cotyle - 15.3 Maximum length - ~167 Length head to ulnar condyle 113.8 164.0 Greatest proximal width 31.5 61.7 Length of coracobrachialis fossa ~30 ~42 Width at midshaft 18.5 36.1 Breadth at midshaft 9.6 16.9 Ulna Total length - 114.5 Radius Total length - 116.1 Carpometacarpus Total length - 97.6 Phalanx II-1 Total length - 59.5 Phalanx II-2 Total length - 39.5 Phalanx III-1 Total length - 40.6 Cranium Coracoid Humerus Character Descriptions for Morphological Characters Used in the Phylogenetic Analysis. Nineteen characters, marked with an asterisk, are new to this study or have been significantly revised. See refs. 1–3 for detailed description, discussion of sources, and illustrations of previously used characters. INTEGUMENT 1. Tip of mandibular rhamphotheca, profile in lateral view: pointed (0); slightly truncated (1); strongly truncated, squared off (2); truncated but with a rounded margin (e.g., as seen in Procellariiformes) (3). 2. Longitudinal grooves on the base of the culmen: absent (0); present (1). 3. Longitudinal grooves on the base of latericorn and ramicorn: absent (0); present (1). 4. Feathering of maxilla (rostrum maxillare), extent: completely unfeathered (0); slightly feathered, less than half the length of maxilla (1); feathering that reaches half the length of maxilla (2); feathering surpassing half the length of maxilla (3). Ordered 5. Ramicorn, inner groove at tip: absent (0); present and single (1); present and double (2). Ordered. 6. Orange or pink plate on ramicorn: absent (0); present (1). 7. Plates of ramphotheca, inflated aspect: absent (0); present (1). 8. Gape (rima oris), aspect: not fleshy (0); margin narrowly fleshy (1); margin markedly fleshy (2). Ordered. 9. Ramicorn color pattern: black (0); reddish (1); pink (2); yellowish (3); orange (4); green (5); blue (6). 10. Latericorn and ramicorn, light distal mark: absent (0); present (1). 11. Latericorn color: black (0); red (1); orange (2); yellow (3); green (4); blue (5). 12. Culminicorn color: black (0); red (1); orange (2). 13. Maxillary and mandibulary unguis, color: black (0); red (1); yellow (2); green (3); bluish gray (4). 14. Bill of downy chick, color: dark (0); reddish (1); pale, variably horn to yellowish (2); bluish (3). 15. Bill of immature, color: dark (0); bicolored reddish and black (1); red (2); yellowish (3); grayish (4). 16. Nostril tubes: absent in adult (0); present in adult (1). 17. Nostril tubes: absent in hatchling (0); present in hatchling (1). 18. External nares: present (0); absent (1). IRIS 19. Iris color: dark (0); reddish-brown (1); claret red (2); yellow (3); white (4); silvery gray (5). FEATHERS 20. Scale-like feathers: absent (0); present (1). 21. Rhachis of contour feathers: cylindrical (0); flat and broad (1). 22. Rectrices: form a fan functional for steering (0); do not form a functional fan (1). 23. Remiges: differentiated from contour feathers and specialized for flight propulsion (0); indistinct from contour feathers (1). 24. Apteria: present (0); absent (1). 25. Molt of contour feathers: gradual (0); simultaneous (1). ADULT PLUMAGE 26. Yellow pigmentation in crown feathers (pileum): absent (0); present (1). 27. Head plumes (crista pennae): absent (0); present (1). 28. Head plumes (crista pennae), aspect: compact (0); sparse (1). 29. Head plumes (crista pennae), aspect: heading upward (0); heading backward, not drooping (1); heading backward, drooping (2). 30. Head plumes (crista pennae), position of origin: at base of bill close to gape (0); on the recess between latericorn and culminicorn (1); on forehead (2). Ordered. 31. Head plumes (crista pennae), color: yellowish (0); orange (1). 32. Nape (occiput), crest development: absent (0); slight (1); distinct (2). Ordered. 33. Periocular area (regio orbitalis), color: black (0); white (1); yellow (2); bluish gray (3). 34. Fleshy eyering (regio orbitalis): absent (0); present (1). 35. White eyering (regio orbitalis): absent (0); present (1). 36. White eyebrow (regio orbitalis, supercilium): absent (0); narrow, from postocular area (1); narrow, from preocular area (2); wide, from preocular area (3). Ordered. 37. Loreal area (lorum), aspect: feathered (0); with spot of bare skin in the recess between latericorn and culminicorn (1); with spot of bare skin contacting eye (2); bare skin extending to the base of bill (3). Ordered. 38. Auricular patch (regio auricularis): absent (0); present (1). 39. Throat pattern (jugulum): black (0); white (1); yellowish (2); irregularly streaked (3); with chinstrap (4). 40. Collar: absent (0); at most slight notch present (1); present, diffusely demarcated (2); black, strongly demarked (3). Ordered. 41. Breast (pectus), golden in color: absent (0); present (1). 42. Dorsum color: black (0); dark bluish gray (1); light bluish gray (2). 43. Black marginal edge of dorsum between lateral collar and axillary patch (axilla), contrasting with dorsum: absent (0); present (1). 44. Black dots irregularly distributed over white belly (venter): absent (0); present (1). 45. Flanks (ilia), dark lateral band reaching the breast (pectus): absent (0); present (1). 46. Distinct dark axillary patch of triangular shape (axila): absent (0); present (1). 47. Flanks (ilia), extent of dorsal dark cover into the leg: incomplete, not reaching tarsus (0); complete, reaching tarsus (1). 48. Rump (pyga): indistinct from dorsum (0); distinctly whitish (1). 49. Tail length (cauda): short, the quills barely emerge from the rump (0); the quills are distinctly developed (1). 50. Outer rectrices, color: same as inner rectrices (0); lighter than inner rectrices (1). 51. White line connecting leading edge of flipper with white belly (venter): absent (0); present (1). 52. Flipper (ala [membrum thoracicum]), upperside, light notch at base: absent (0); present (1). 53. Leading edge of flipper (ala [membrum thoracicum]), pattern of upperside: black (0); white (1). 54. Leading edge of flipper (ala [membrum thoracicum]), pattern of underside: white (0); incompletely dark (1); completely dark and wide (2). Ordered. 55. Flipper (ala [membrum thoracicum]), underside, dark elbow patch: absent (0); present (1). 56. Flipper (ala [membrum thoracicum]), underside, tip pattern: immaculate (0); patchy, in variable extent (1); small circular dot present (2). IMMATURE PLUMAGE 57. White eyebrow (supercilium): absent (0); or present (1). 58. Throat pattern (jugulum): black (0); or mottled (1); or white (2); or brown (3). 59. Flanks (ilia), dark lateral band: absent (0); or present (1). 60. Chicks hatch almost naked: no (0); yes (1). 61. Dominant color pattern of first down: pale gray (0); distinctly brown (1); bicolored, dark above and whitish bellow (2); uniformly blackish gray (3). 62. Dominant color pattern of second down: pale grey (0); distinctly brown (1); bicolored, dark above and whitish bellow (2); uniformly blackish gray (3). 63. Chick, second down, collar: absent (0); present (1). TARSUS 64. Feet (pedes), dorsal color: dark (0); pinkish (1); orange (2); white-flesh (3); blue (4). 65. Feet (pedes), dark soles: absent (0); present (1). 66. Feet (pedes), unguis digiti: flat (0); compressed (1). BREEDING 67. Clutch size: two eggs (0); one egg (1). 68. Incubatory sac: absent (0); present (1). 69. Nest: no nest, incubation over the feet (0); nest placed underground, either burrowed on sand or inside natural hollow or crack (1); open nest, a shallow depression on bare ground or in midst of vegetation (2). 70. Size of first egg relative to the second egg: similar (0); dissimilar, first smaller (1); dissimilar, second smaller (2). 71. Crèche: absent (0); small, 3-6 birds (1); conformed by dozens to hundreds of immatures (2). 72. Eggs, shape: oval (0); conical (1); spherical (2). 73. Ecstatic display: absence (0); presence (1). OSTEOLOGY 74. Premaxilla, tip (os premaxillare, rostrum maxillare): pointed (0); hooked (1); strongly hooked (2). Ordered. *75. Internarial bar (pila supranasalis) shape in cross section: suboval (0); inverted U-shape (1). 76. Basioccipital, subcondylar fossa (os basioccipitale, fossa subcondylaris): absent or shallow (0); deep (1). 77. Supraoccipital, paired grooves for the exit of v. occipitalis externae (os supraoccipitale, sulcus vena occipitalis externae): poorly developed (0); deeply excavated (1). 78. Frontal, shelf of bone bounding salt-gland fossa (os frontale, fossa glandulae nasalis) laterally: absent (0); present (1). 79. Squamosal, temporal fossa (os squamosum, fossa temporalis), size: fossae separated by considerable wide surface (at least the width of the cerebellar prominence) (0); more extensive, fossae meeting or nearly meeting at midline of the skull (1). 80. Squamosal, temporal fossa (os squamosum, fossa temporalis), depth of caudal region: flat (0); shallow (1); greatly deepened (2). Ordered. 81. Squamosal (os squamosum), development of the opening/s that transmits the a. ophthalmica externa in the caudoventral area of the fossa temporalis (near the crista nuchalis): small or vestigial (0); well-developed (1). 82. Orbit (orbita), fonticuli orbitocraneales: small or vestigial (0); broad and conspicuous openings (1). 83. Ectethmoid (os ectethmoidale): absent (0); weakly developed, widely separate from the lacrimal (1); well developed, contacting or fused to the lacrimal (2). 84. Lacrimal (os lacrimale): unperforated (0); perforated (1). 85. Lacrimal (os lacrimale): reduced, concealed in dorsal view (0); small portion exposed in dorsal view (1); well-exposed in dorsal view (2). Ordered. 86. Lacrimal (os lacrimale), dorsal border: closely applied to the frontal (0); separated by a wide split from the frontal (1). 87. Nasal cavity, external naris (cavum nasi, apertura nasi ossea), caudal margin: extended caudal to the rostral margin of the hiatus orbitonasalis (0); not extended caudal to the rostral margin of the hiatus orbitonasalis (1). 88. Nasal cavity, pila supranasalis: slender, slightly constricted laterally (0); wide throughout its length (1). 89. Basitemporal plate (lamina parasphenoidalis), dorsoventral position with respect to the occipital condyle: ventral to the level of the condyle (0); at the level of the condyle (1); dorsal to the level of the condyle, surface depressed (2). Ordered. 90. Basipterygoid process (proccessus basipterygoideus): absent (0); vestigial or poorly developed (1); well developed (2). Ordered. 91. Eustachian tubes (tuba auditiva): open or very little bony covering near the caudal end of the tube (0); mostly enclosed by bone (1). 92. Pterygoid (os pterygoideum), shape: elongated (0); slight lateral expansion of rostral end (1) rostal end broad, pterygoid sub-triangular (2). Ordered 93. Palatine (os palatinum), lamella choanalis: curved and smooth plate, sligthly differentiated from main palatine blade (0); ridged, distinct from main blade by a low keel (1); extended vertically ventrally forming the crista ventralis (2). Ordered. 94. Vomer (vomer): laterally compressed, vertical laminae and free from palatines (0); horizontally flattened laminae and ankylosed with palatines (1), absent (2). 95. Facial foramen (ossa otica, fossa acustica interna, foramen n. facialis): absent (0); present (1). 96. Jugal arch (arcus jugalis), bar shape in lateral view: straight (0); slightly curved (1); ventrally bowed (2); strongly curved, sigmoid shape (3). Ordered. 97. Jugal arch (arcus jugalis), dorsal process: absent (0); present (1). This pointed process is located on the caudal end of the jugal, adjacent to the condyle for articulation with the quadrate. 98. Premaxilla, frontal process (os premaxillare, proc. frontalis), naso-premaxillary suture: visible (0); obliterated (1). 99. Quadrate, otic process (os quadratum, proc. oticus), rostral border, tuberculum origi m. adductor mandibulae externus, pars profunda: absent (0); present, as a ridge (1); presence, as a tubercle (2). 100. Tomial edge (crista tomialis): plane of tomial edge approximately at the level of the basitemporal plate (lamina parasphenoidalis) (0); dorsal to the level of the basitemporal plate (1). *101. Mandible, symphysis (rostrum mandibulae, pars symphysialis): extensive bony connection (0); short terminal bony connection (1). 102. Mandible, coronoid process (mandibula, processus coronoideus), position on the dorsal margin of the mandible with respect to the caudal fenestra (fenestra mandibulae caudalis): markedly rostral (0); on the rostral end of the fenestra (1); caudal to fenestra (2). Ordered. 103. Mandible, rostral fenestra (mandibula, fenestra mandibulae rostralis): imperforate or small opening (0); large opening (1). 104. Mandible, caudal fenestra (mandibula, fenestra mandibulae caudalis): open, can be seen through from the medial or lateral aspects (0); nearly or completely concealed by the os spleniale medially, i.e., fenestra not visible in the medial aspect (1). 105. Mandible, mandibular ramus (mandibula, ramus mandibulae): depth subequal over entire ramus (0); pronounced deepening at midpoint (1). 106. Mandible, dentary, length of dorsal edge (ossa mandibulae, os dentale, margo dorsalis) relative to mandibular ramus length in lateral view: markedly more than half the length of ramus (0); approximately half the length of ramus (1). 107. Mandible, articular, medial process (os articulare, proc. medialis mandibulae): not hooked (0); hooked (1). 108. Mandible, angular, retroarticular process (mandibula, os angulare, proc. retroarticularis), aspect in dorsal view in relation to the articular area with the quadrate (area between the lateral condyle [condylus lateralis] and medial condyle [condylus medialis]): broad, approximately equal to the articular area (0); moderately long, narrower than the articular area (1); very long, longer and narrower than the articular area (2). Ordered. 109. Mandible, angular (mandibula, os angulare), aspect in dorsal view: sharply truncated caudally (0); caudally projected, forming the retroarticular process (proc. retroarticularis) (1). 110. Mandible, medial emargination between retroarticular process (os angulare, proc. retroarticularis), and medial process (os articulare, proc. medialis mandibulae): absent (0); weak concavity (1); strong concavity (2). This character is easiest to evaluate in ventral view. This character is non-comparable in taxa lacking a retroarticular process. Ordered. 111. Atlas (atlas), proc. ventralis: absent or sligthly developed (0); well developed, high and prominent ridge on the dorsal surface of the arcus atlantis (1). 112. Transition to free cervicothoracic ribs (costae incompletae) arrives at: 13th cervical vertebrae (vertebrae cervicodorsales): (0); 14th cervical vertebrae (1); 15th cervical vertebrae (2). Ordered. 113. Cervical vertebrae (vertebrae cervicales), elongated dorsal process (processus spinosus) on the sixth cervical vertebra: absent (0); present (1). 114. Cervical vertebrae (vertebrae cervicales), transverse processes (processus transversus) in last five cervical vertebrae: not elongated laterally (0); greatly elongated laterally (1). 115. Cervical vertebrae (vertebrae cervicales), transverse processes (processus transversus) of vertebrae 12-13: laterally oriented (0); deflected dorsally (1). 116. Thoracic vertebrae (vertebrae thoracicae), posteriormost vertebrae: heterocoelous (0); weakly opisthocoelous; (1); strongly opisthocoelous (2). Ordered. *117. Synsacrum (synsacrum), number of incorporated vertebrae: eleven (0); twelve (1); thirteen (2); fourteen (3). 118. Caudal vertebrae (vertebrae caudales): seven (0), eight (1), nine (2). Ordered. 119. Ribs, uncinate processes (costae, proc. uncinatus): elongate, narrow (0), wide, spatulate (1), wide, bifurcated (2). 120. Sternum, external spine (sternum, spina externa rostri): absent (0); present (1). 121. Sternum, furcular facet (sternum, facies articularis furculae) projects as a distinctive process: absent (0); present (1). *122. Sternum, coracoid facets (sternum, sulcus articularis coracoideus): meet or overlap one another at midline (0); separated by wide non-articulatory surface (1). *123. Sternum, labrum internum: continues as sharp ridge onto the base of the external spine (spina externa) (0); fades away without continuing onto the base (1). 124. Clavicle, furcular process (clavicula, apophysis furculae): absent or low blade-like process (0); knob-like process (1); long process (2). 125. Scapula, blade, caudal half (scapula, corpus scapulae, extremitas caudalis): blade-like (0); expanded and paddle-shaped (1). 126. Coracoid, medial margin, (coracoideum, margo medialis) coracoidal fenestra: complete (0); incomplete (1); absent (2). 127. Coracoid, foramen nervi supracoracoidei: absent (0), present (1). 128. Coracoid, sternal end (coracoideum, extremitas sternalis coracoidei): greatly expanded (0); moderate expansion (1). 129. Coracoid, sternal end (coracoideum, extremitas sternalis coracoidei): convex (0) concave (1), flat (2). 130. Forelimbs (ossa alae), flattened: absent (0); present (1). 131. Humerus, head (caput humeri): very developed and reniform, continuous with tubercucum dorsale: absent (0); present (1). 132. Humerus, head (caput humeri) in posterior view: apex of humeral head located near midline (0); humeral head slopes so that apex of humeral head located ventrally (1). 133. Humerus, incisura captius: essentially confluent with sulcus transversus (0); clearly separated from sulcus transversus (1). 134. Humerus, pit for ligament insertion on proximal surface adjacent to head (see Fig. 8 in reference 2): absent or very shallow (0); deep (1). *135. Humerus, orientation of intumenscenita humeri and tuberculum ventrale: intumenscentia projects ventrally from shaft, tuberculum oriented posteriorly (0); intumenscentia projects ventrally from shaft, tuberculum oriented ventrally (1); intumenscentia projected more anteroventrally (so as to be partially obscured in posterior view), tuberculum oriented anteroventrally (2). 136. Humerus, tricipital fossa (humerus, fossa tricipitalis), aspect: small with penetrating pneumatic foramina (0); moderate fossa without pneumatic foramen (1); deep fossa without pneumatic foramen. 137. Humerus, tricipital fossa (humerus, fossa tricipitalis), subdivided into cavities: single (0); bipartite (1). *138. Humerus, deltoid crest, impression for attachment of pectoral muscle (humerus, crista deltopectoralis, impressio m. pectoralis): superficial poorly-defined groove (0); shallow, well-defined oblong fossa (1); deep, well-defined oblong fossa (2). Ordered 139. Humerous, imperssio insertii m. supracoracoideus : small, semicircular scar (0); greatly elongated with long axis parallel to main axis of humeral shaft (1), greatly elongated with long axis oblique to long axis of shaft (2). 140. Humerus, imperssio insertii m. supracoracoideus and m. latissimus dorsi: separated by a wide gap (0); separated by small gap or confluent (1). 141. Humerus, proximal margin of tricipital fossa ( fossa tricipitalis): weak projection (0); projects so as to be well-exposed in proximal view (1). 142. Humerus, shaft, dorsoventral width: shaft thins or maintains width distally (0); shaft widens distally (1). *143. Humerus, nutrient foramen (foramen nutricum): situated on ventral face of shaft (0) situated on anterior face of shaft (1). *144. Humerus, anterior face of shaft (humerus, facies cranialis) elongate depression near ventral margin: absent (0); present (1). This depression is present only in certain fossil taxa and is not to be confused with the vascular depression that runs distally from the ventral to the dorsal margin of the shaft in all penguins. 145. Humerus, shaft, sigmoid curvature: absent or weak (0); strong (1). 146. Humerus, development of dorsal supracondylar process (humerus, proc. supracondylar dorsalis): absent (0); compact tubercle (1); very long process (2). *147. Humerus, demarcation of scapulatriceps groove (sulcus scapulotricipitalis): not demarcated (0); passage a well-marked groove (1); development of trochlear process for articulation with os sesamoideum m. scapulotricipitis (2). Ordered. *148. Humerus, anterior trochlear ridge: does not project distal to the middle and posterior trochlear processes (0), projects distal to the middle and posterior trochlear processes (1). 149. Humerus, posterior trochlear process: extends beyond the humeral shaft (0); does not extend beyond the humeral shaft (1). 150. Humerus, angle between main axis of shaft and tangent of radial and ulnar condyles (condylus dorsalis humeri et condylus ventralis humeri): less than 45 degrees (0); more than 45 degrees (1); nearly 90 degrees (2). 151. Humerus, ulnar and radial condyles (humerus, condylus dorsalis humeri et condylus ventralis humeri): ulnar condyle projected and rounded (0); ulnar condyle flattened (1). *152. Humerus, shelf adjacent to ulnar condyle (condylus ventralis): large, ratio of condyle width: shelf width >1.3 (0); moderate, ratio of condyle width:shelf width 1.3-2.0 (1); greatly reduced, less than half condyle width (2). 153. Ulna, olecranon and posterior border (ulna, olecranon et margo caudalis): border forms smooth curve with apex located one fourth of length to distal end (0) well-developed tablike projection arises proximally, very close to humeral articulation (1) acute projection, distally displaced from humeral facet (2); rounded (3). 154. Ulna, distinct process extending toward sulcus humerotricipitalis of humerus: absent (0), present (1). *155. Carpometacarpus, processus pisiformis: well-projected round tubercle (0); reduced to a low ridge (1). 156.Carpometacarpus, distal facet on metacarpal I (os metacarpale aluaris): absent (0); present (1). *157. Carpometacarpus, metacarpal II (os metacarpale majus), distinct anterior bowing: absent (0); present (1). *158. Carpometacarpus, extension of metacarpals II and III (os metacarpale majus et minus): subequal (0); metacarpal III projects markedly distal of metacarpal II. *159. Carpometacarpus, metacarpal III, distal articular surface (fascies articularis digitalis major): wedge shaped or broadens anteriorly in distal view (0), slightly depressed ovoid surface (1). 160. Phalanges of manus, phalange digit III (ossa digitorum manus, phalanx digiti minoris), proximal process: absent (0); present (1). *161. Phalanges of manus, relative length of phalanx digiti minoris and first phalanax digiti minoris: phalanx digiti minoris much shorter (0); subequal (1) 162. Phalanges of manus (ossa digitorum manus, phalanges), length relative to carpometacarpus: long (0); short (1) 163. Fusion of illia to synsacrum: unfused (0); partially fused (1); well-fused (2). 164. Pelvis, size of ilio-ischiatic fenestra (foramen ilioischiadicum) in relation to acetabulum (foramen acetabuli): smaller (0); similar or larger (1). 165. Pelvis, ischio-pubic fenestra (fenestra ischiopubica): very wide and closed at its caudal end (0); slit-like and open at its caudal end (1). 166. Ischium, most caudal extent in relation to postacetabular ilium (ala postacetabularis illi): ischium shorter than ilium (0); ischium projects slightly beyond the ilium (1); ischium produced far caudal to ilium (2). 167. Femur, patella (femur, patella), sulcus m. ambiens: shallow groove (0); deep groove (1); perforated (2). 168. Tibiotarsus, patellar crest (tibiotarsus, crista patellaris): greatly enlarged (0); slightly developed (1). *169. Tibiotarsus, shaft, anteroposterior flattening: weak, midshaft anteroposterior depth greater than 75% mediolateral width (0) ; strong, midshaft anteroposterior depth equal to or less than 75% mediolateral width (1). 170. Tarsometatarsus (tarsometatarsus), elongation index (proximodistal length / mediolateral width at proximal end): slender, EI>3 (0); shortened, 2.5<EI < 3 (1), greatly shortened EI < 2.5 (2). Ordered. 171 Tarsometatarsus, medial margin (tarsometaasus, margo medialis), pronounced convexity: absent (0), present (1). 172. Tarsometatarsus, intermediate hypotarsal crest (crista intermediae hypotarsi): nondistinct (0); distinct (1). 173. Tarsometatarsus, sulcus longitudialis dorsalis medialis: absent or barely perceptible (0); shallow groove (1); deep groove (2). Ordered. *174. Tarsometatarsus, os metatarsale IV: distal end projects laterally (0); straight (1), distal end deflected medially (2). A new state is added here to accommodate the shape in Archaeospheniscus lopdelli. 175. Tarsometatarsus, foramem vascularia proximalia medialis opening on fossa para hypotarsalis medialis: absent (0); present (1). 176. Tarsometatarsus, proximal vascular foramina on plantar surface: medial foramen (foramen vasculare proximale mediale) present, lateral foramen (foramen vasculare proximale laterale) absent or vestigal (0); both foramina present (1); lateral foramen present, medial foramen absent or vestigal (2). 177. Tarsometarsus, foramen vasculare distale: present, separated from incisura intertrochlearis lateralis by osseus bridge (0); present, open distally (1); absent (2). Ordered. 178. Tarsometatarsus, hypotarsus, tendinal canals (tarsometatarsus, hypotarsus, canales hypotarsi): present (0); absent (1). MYOLOGY 179. M. latissimus dorsi, pars cranialis, accesory slip: absent (0); present (1). 180. M. latissimus dorsi, pars cranialis and pars caudalis: separated (0); fused (1). 181. M. latissimus dorsi, pars metapagialis, development: wide (0); intermediate (1); narrow (2). Ordered. 182. M. serratus profundus, cranial fascicle: absent (0); present (1); 183 M. deltoideus, pars propatagialis, subdivision in superficial and deep layers: undivided (0); divided (1). 184. M. deltoideus, pars major: triangular or fan-shaped (0); strap-shaped (1). 185. M. deltoideus, pars major, caput caudale: short (0); intermediate (1); long (2). Ordered. 186. M. deltoideus, pars minor, origin on the clavicular articulation of the coracoid: absent (0); present (1). 187. M. ulnometacarpalis ventralis: absent (0); present (1). 188. M. iliotrochantericus caudalis: narrow (0); wide (1). 189. M. iliofemoralis, origin: tendinous (0); mostly tendinous (1); mostly fleshy (2); totally fleshy (3). Ordered. 190. M. flexor perforatus digitis IV, rami II-III: free (0); fused (1). 191. M. flexor perforatus digitis IV, rami I-IV: free (0); fused (1). 192. M. flexor perforatus digitis IV, insertion of middle rami: on phalanx 3 (0); on phalanx 4 (1). 193. M. latissimus dorsi, pars caudalis, additional origin from dorsal process of vertebrae (spinous process of Schreiweis, 1982): absent (0); present (1). DIGESTIVE TRACT 194. Mouth, oral mucosa (bucca, tunica mucosa oris), buccal papillae group on the medial surface of the lower jaw (ramus mandibularis) at the level of the rictus: small number of rudimentary papillae with no clear arrangement (0); two clear rows of short conical papillae (1); large, elongated papillae with no clear arrangement (2). References 1. Bertelli S, Giannini NP (2005) Cladistics 21:209–239. 2. Ksepka DT, Bertelli S, Giannini NP (2006) Cladistics 22:412–441. 3. Giannini P, Bertelli S (2004) Auk 121:422–434. 4. Marples BJ (1952) N Z Geol Surv Paleontol Bull 20:1–66. 5. Simpson GG (1946) Bull Am Mus Nat Hist 87:7–99. 6. Clarke JA, Olivero EB, Puerta P (2003) Am Mus Novit 3423:1–18. 7. Mayr G (2004) J Zool Syst Evol Res 43:61–71. 8. Goloboff PA (1999) Cladistics 15:415–428. 9. Williams TD (1995) The Penguins (Oxford University Press, Oxford). 10. Ronquist F (1997) Syst Biol 46:195–203. 11. Baker AJ, Pereira SL, Haddrath OP, Edge K-A (2006) Proc R Soc London Ser B 212:11– 17. 12. Cooper A, Penny D (1997) Science 275:1109–1113. 13. Patterson AM, Wallis GP, Gray RD (1995) Evolution (Lawrence, Kans) 49:974–989. 14. Slack KE, Jones CM, Ando T, Harrison GL, Fordyce RE, Arnason U, Penny D (2006) Mol Biol Evol 23:1144–1155. 15. Van Tuinen M, Sibley CG, Hedges SB (2000) Mol Biol Evol 17:451–457. 16. Nunn GB, Cooper J, Jouventin J, Robertson CJR, Robertson GG (1996) Auk 113:784– 801. 17. Nunn GB, Stanley SE (1998) Mol Biol Evol 15:1360–1371. 18. Stanley SE, Harrison RG (1999) Mol Biol Evol 16:1575–1585. 19. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) PLoS Biol 2:1657–1663. 20. Myrcha A, Jadwiszczak P, Tambussi CP, Noriega JI, Gazdzicki A, Tatur A, del Valle RA (2002) Polish Polar Res 23:5–46. 21. Simpson GG (1971) Bull Am Mus Nat Hist 144:319–378. 22. Fordyce RE, Jones CM (1990) in Penguin Biology, eds Davis LS, Darby JT (Academic, San Diego), pp 419–446. 23. Marples BJ (1960) Records Canterbury Mus 7:185–195. 24. Simpson GG (1981) Ameghiniana 18:266–272. 25. Simpson GG (1971) Records Canterbury Mus 9:159–182. 26. Simpson GG (1972) Am Mus Novit 2488:1–37. 27. Acosta Hospitaleche C, Stucchi M. (2005) Revista de la Sociedad Española de Paleontología 20:1–15. 28. Stucchi M, Urbina M, Giraldo A (2003) Bol Instituto Francés de Estudios Andinos 32:361–375. 29. Stucchi M (2002) Bol Soc Geol Perú 94:19–26. SI Data Set. Morphological Data Matrix Numbered entries refer to the character states listed in SI Appendix . ?, missing data; -, nonapplicable. These two symbols are treated identically in analysis. Taxon Gavia immer Gavia stellata Diomedea exulans Diomedea melanophrys Phoebetria palpebrata Macronectes giganteus Daption capense Procellaria aequinoctialis Puffinus griseus Pterodroma incerta Oceanodroma leucorhoa Oceanites oceanicus Pachyptila desolata Pelecanoides urinatrix Aptenodytes forsteri Aptenodytes patagonicus Pygoscelis antarctica Pygoscelis papua Pygoscelis adeliae Megadyptes antipodes Eudyptes chrysocome moseleyi Eudyptes chrysocome chrysocome Eudyptes chrysolophus Eudyptes schlegeli Eudyptes pachyrhynchus Eudyptes robustus Eudyptes sclateri Eudyptula minor Spheniscus demersus Spheniscus humboldti Spheniscus magellanicus Spheniscus mendiculus Spheniscus urbinai Spheniscus megaramphus Marplesornis novaezealandiae Palaeospheniscus patagonicus Eeretiscus tonnii Platydyptes novaezealandiae Platdyptes marplesi Platydyptes amiesi Paraptenodytes antarcticus Archaeospheniscus lowei Archaeospheniscus lopdelli Pachydyptes ponderosus Icadyptes salasi Palaeeudyptes sp. OM C.48:73-81 Palaeeudyptes sp. OM C.47:25 Palaeeudyptes sp. OM C.47:23 Palaeeudyptes klekowskii Palaeeudyptes gunnari Anthropornis nordenskjoeldi Anthropornis grandis Delphinornis larseni Mesetaornis polaris Marambiornis exilis Perudyptes devriesi Waimanu tuatahi Waimanu manneringi Character 1 2 ? ? 0 0 ? ? 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 2 1 2 1 2 1 2 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 ? 1 ? 0 0 1 1 0 0 0 0 0 0 0 2 1 2 2 3 1 1 1 1 1 1 1 1 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 5 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 6 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 8 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 2 2 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? 0 ? 4 0 3 0 5 0 0 0 0 6 0 0 0 0 1 1 2 1 1 1 1 1 1 1 0 0 0 0 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 10 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 11 ? 0 ? 2 0 3 0 4 0 0 0 0 5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 12 ? 0 ? 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 13 ? 0 ? 1 0 2 0 3 0 0 0 0 4 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 14 ? 0/1/2/3 ? 0 0 2 0 ? 0 0 0 0 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 15 ? 0 ? 0 0 3 0 0 0 0 0 0 4 0 0 0 0 1 1 0 2 2 2 2 2 2 2 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 16 ? 0 ? 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 17 ? 0 ? 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 18 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 19 ? 2 ? 0 0 5 0 0 0 0 0 0 0 0 0 0 2 1 4 3 2 2 2 2 6 6 0 5 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 20 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 21 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 22 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 23 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 24 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 25 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 26 ? ? 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 27 ? ? 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 28 ? ? 1 1 1 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 29 ? ? 2 2 2 2 1 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 30 ? ? 1 1 2 2 1 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 31 ? ? 0 0 1 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 32 ? ? 0 0 0 0 1 0 2 2 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 33 ? ? 0 0 1 0 0 2 0 0 0 1 0 0 0 3 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 34 ? ? 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 35 ? ? 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 36 ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 2 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 37 ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 38 ? ? 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 39 ? ? 0 0 4 0 0 2 0 0 0 1 0 0 0 1 0 3 0 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 40 ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 41 ? ? 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 42 ? ? 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 43 ? ? 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 44 ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 45 ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 46 ? ? 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 47 ? ? 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 60 61 ? ? 0 1 ? ? 0 0 0 0 0 3 0 0 0 1 0 0 0 ? 0 0 0 1 0 0/1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 2 0 ? 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 62 ? 1 ? 0 0 3 0 1 0 ? 0 1 0 0 0 1 0 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 63 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 64 ? 0 ? 3 3 0/1/2/3 0 0 1 1 0 0 4 4 0 0 1 2 1 1 1 1 1 1 1 1 1 3 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 65 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 66 ? 0 ? 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 67 ? 0 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 68 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 69 ? 2 ? 2 2 2 2 1 1 1 1 1 1 1 0 0 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 70 ? 0 ? 0 2 2 0 1 1 1 1 1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 71 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 2 2 2 2 2 2 2 1 1 ? 2 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 72 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 73 ? 0 ? 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 74 0 0 2 2 2 2 2 ? 2 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 75 0 0 ? ? ? 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? 0 ? ? ? ? ? ? ? 0 ? ? 76 77 78 1 1 1 1 1 1 1 0 1 1 0 1 1 ? 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0/1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0/1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 ? ? 0 ? ? 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? 0 ? ? ? 79 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 ? ? ? ? ? 1 ? ? ? 1 ? ? ? ? ? ? ? ? ? ? 1 1 ? 80 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? ? ? ? 2 ? ? ? 2 ? ? ? ? ? ? ? ? ? ? 2 2 ? 81 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? 82 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? 0 ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 83 0 0 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 84 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 85 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? 86 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 87 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 88 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 89 1 1 0 0 2 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 ? ? ? ? ? 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? 90 91 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 2 0 2 0 0 1 0 1 0 0/1 0 0/1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ? ? ? 1 0 1 ? ? ? ? ? ? ? ? ? ? 0 1 ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 1 ? ? ? ? ? 0 ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 93 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 94 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 95 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 96 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0/1 2 0 3 0 2 0/1 3 0 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 0 1 0 1 0 1 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? 98 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? 1 ? ? 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 2 2 2 ? ? 2 ? ? ? ? ? 2 ? ? ? 2 ? ? ? ? ? ? ? ? ? ? ? ? ? 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 101 102 0 0 0 0 1 0 1 1 ? 1 1 0 1 0 1 0 1 0 1 0 1 ? 1 ? 1 0 1 1 0 1 0 1 1 2 1 1 1 2 1 2 1 2 1 1/2 1 2 1 2 1 2 1 2 1 2 1 1 1 0 1 0 1 0 1 0 ? ? ? 0 ? 2 ? ? ? ? ? ? ? ? ? ? ? 2 0 ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? 103 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0/1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? 0 0 ? 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 ? 0 ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? 0 ? ? 107 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 0 ? ? ? ? ? 0 ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 ? 1 0 ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 118 ? 0 ? 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 119 0 0 0 0 ? 0 0 0 0 ? 0 0 0 0 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 120 0 0 1 1 1 1 1 1 1 ? 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 121 1 0 1 1 1 1 1 1 1 ? 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 122 1 1 0 0 ? 0 0 ? 0 ? 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 123 0 0 ? 0 ? 0 0 ? 0 ? 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 0 ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 124 0 2 1 1 1 0 1 1 1 ? 2 2 1 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? 0 ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 125 126 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 ? ? 0 2 0 2 0 2 0 2 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0/1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 ? 0 ? ? 1 0 ? ? ? ? ? ? 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? 127 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? 0 ? 0 ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 128 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 ? ? ? 1 ? ? 0 0 0 ? ? 0 ? ? ? ? ? ? ? ? ? 0 ? 129 1 1 2 2 2 2 2 2 2 ? 1 ? 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 ? ? ? 0 ? ? 0 0 0 ? ? 0 ? ? ? ? ? ? ? ? ? 1 ? 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 1 ? 131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 ? ? ? 1 1 ? 132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 ? 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 ? ? ? 0 0 ? 133 134 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0/1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 1 0 1 ? 1 0 1 0 0 0 0 0 0 0 ? ? 0 0 ? 0 0 0 0 0 ? ? 0 0 0 0 0 0 ? ? ? ? ? ? ? ? 0 0 1 0 ? ? 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 2 2 2 2 1 1 ? 1 1 1 1 1 1 1 1 1 ? ? ? 1 ? ? 136 1 1 0 0 0 1 1 1 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 ? ? ? 2 2 ? 137 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 ? 0 0 0 0 ? 0 0 0 0 ? 0 0 0 ? ? ? ? 0 0 ? 138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 ? ? ? 1 1 ? 139 0 0 0 0 0 0 0 0 0 0 1 1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 2 ? 2 2 2 2 ? 1 1 1 ? 1 1 1 2 ? ? ? ? 1 1 ? 140 0 0 0 0 0 0 0 ? 0 0 ? ? ? 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 1 1 ? ? 1 1 1 ? 0 0 0 0 0 0 0 0 ? ? ? ? 0 0 ? 141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 ? ? 0 ? 0 0 0 0 0 ? 0 ? 0 ? 0 ? 0 ? ? ? ? ? 0 1 ? 142 143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ? ? 1 0 1 0 1 ? 1 ? 1 ? 1 1 1 1 1 1 ? ? 0 0/1 0 ? 0 1 0 1 0 ? 0 1 0 1 0 ? ? ? ? ? ? ? ? ? 0 1 0 1 ? ? 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 ? ? ? 0 0 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? 0 ? 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 1 ? 0 0 0 0 0 1 1 1 ? ? ? ? 1 1 ? 146 1 1 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? 1 1 ? 147 1 1 0 0 ? 0 0 0 0 ? 0 1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 2 ? 2 2 2 2 2 2 2 2 2 ? 2 ? ? ? ? ? ? ? 1 ? 148 149 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0/1 1 1 1 1 1 1 1 1 ? ? ? ? 1 0 1 ? 1 ? ? ? 1 1 1 0 1 1 1 ? 1 1 1 ? 1 ? ? ? 1 ? ? ? 1 1 ? ? ? ? ? ? ? ? ? ? 0 ? 0 ? ? ? 150 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? 151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? 0 ? 152 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 ? 1 1 1 1 1 1 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? 153 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 2 ? 0 0 ? ? 0 0 ? 1 1 1 1 1 ? ? ? ? ? ? ? 1 ? 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? 0 ? 1 1 ? ? ? ? ? ? 0 0 0 ? ? ? ? ? ? ? ? 0 ? 155 0 0 0 0 0 0 1 0 0 0 0 0 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 ? ? ? ? ? ? ? 1 1 1 1 1 ? ? ? ? ? ? ? 1 0 ? 156 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? 0 ? ? ? ? ? ? ? ? 1 1 0 0 ? ? ? ? ? ? ? ? 1 ? 157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 ? ? 1 ? ? ? ? 1 1 1 1 1 ? ? ? ? ? ? ? 1 0 ? 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 ? ? 1 ? ? ? ? 0 0 ? 1 1 ? ? ? ? ? ? ? 0 0 ? 168 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 ? ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? 1 169 170 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 ? 2 ? ? ? ? ? 2 ? 1 ? ? ? ? ? ? 1 2 ? ? ? 2 ? ? ? ? ? 2 ? ? ? ? ? 2 ? 2 ? 1 ? 1 ? 1 ? 1 ? 1 ? 1/2 ? 1 1 1 171 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? 0 0 ? ? ? 0 ? 0 ? ? ? ? ? 0 0 1 1 0 0 0 0 0 0 172 173 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ? ? 1 0 1 0 ? 0 1 0 0 2 0 2 0 1 0 1/2 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1/2 0 2 0 2 0 2 0 2 0 2 0 2 ? ? ? ? 0 1 0 1 ? ? ? ? ? ? ? 0 ? ? ? 0 ? ? ? ? ? 0 ? ? ? ? 1 0 ? 0 ? 0 ? 0 0 0 1 0 1 0 ? 0 ? 0 1 0 174 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 ? ? ? ? ? 2 ? ? 1 ? ? 1 1 1 1 1 1 1 1 0 0 175 1 1 1 1 1 1 1 1 1 ? 1 1 ? ? 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? ? ? 0 ? 0 ? ? ? ? 0 0 0 0 0 0 0 ? ? 1 176 1 1 1 1 1 1 1 1 1 ? ? 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 2 2 ? ? ? 1 ? 1 ? ? 2 ? ? 2 2 0 0 1 1 1 2 1 1 177 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 ? ? ? ? 2 ? 2 ? ? 2 ? ? 2 2 2 2 0 1 1 2 0 0 178 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 ? ? ? 1 ? 1 ? ? ? ? ? 1 1 ? 1 1 1 1 ? 1 1 179 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 0 ? 0 0 0 0 ? ? 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 180 ? 0 ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 0 ? 0 0 0 0 ? ? 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 181 ? 2 ? ? ? ? ? ? ? ? ? ? ? ? 0 0 2 2 2 1 ? 1 1 1 1 ? ? 2 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 182 183 ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 0 1 1 1 0 0 1 ? ? 1 1 1 1 1 1 1 0/1 ? ? ? ? 1 0 0 1 0 1 0 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 184 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 ? 0 0 0 0 ? ? 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 185 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 2 2 2 2 ? 0 0 0 0 ? ? 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 186 ? 0 ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 ? 0 0 0 0 ? ? 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 187 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 1 1 1 ? 0 0 0 0 ? ? 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 188 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 0 ? 0 0 0 0 ? ? 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 189 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 0 0 0 0 ? 1 1 1 1 ? ? 0 3 3 3 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 190 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 1 ? 1 1 1 1 ? ? 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 191 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 1 1 1 ? 1 1 1 1 ? ? 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 192 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 ? 0 0 0 0 ? ? 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 193 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 0 ? 0 0 0 0 ? ? 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 194 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? 2 ? ? 1 1 1 ? ? ? ? 0 0 ? 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?