Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

About an Identity and Its Applications

2010
...Read more
About an Identity and its Applications Mihály Bencze and Florentin Smarandache Str. Hărmanului 6, 505600 Săcele, Jud. Braşov, Romania University of New Mexico, 200 College Road, Gallup, NM 87301, USA Theorem 1. If , x y C then ( ) ( ) ( ) ( ) ( ) 3 3 4 2 2 3 3 2 2 2 x y x y x y x y x xy y + - + + = - + + . Proof. With elementary calculus. Application 1.1. If , x y C then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 3 3 4 3 3 2 2 3 3 2 2 3 3 2 2 4 2 2 4 2 2 x y x y x y x y x y x y x y x xy y + - + + + - - - = - + + Proof. In Theorem 1 we replace y y →- , etc. Application 1.2. If x R then ( )( ) ( ) ( ) 4 3 3 3 sin cos 1 sin cos sin cos sin cos 2 x x x x x x x x - + + + + = Proof. In Theorem 1 we replace sin , cos x x y x Application 1.3. If x R then ( ) ( ) ( ) ( ) 3 4 6 3 2 2 1 1 1 ch x shx sh x shx shx ch x - + + = + + . Proof. In Theorem 1 we replace 1, x y shx Application 1.4. If , x y C ( ) x y ≠± then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 3 3 3 2 2 3 3 2 2 3 3 2 2 4 4 2 2 2 x y x y x y x y x y x y x y x y x y + - + + + - - - + = + - + Application 1.5. If , x y C then ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 3 3 3 2 2 3 3 2 2 3 3 4 2 2 4 2 2 2 2 2 2 2 6 x y x y x y x y x y x y x xy y x xy y x xy y + - + + + - - - + = + + + + - + Application 1.6. If , x y R then ( ) ( ) ( ) 3 3 2 2 3 3 2 x y x y x y + + + . (See Jószef Sándor, Problem L.667, Matlap, Kolozsvar, 9/2001.) Proof. See Theorem 1. Theorem 2. If , , x yz R then ( ) ( ) ( ) 3 3 2 2 2 3 3 3 3 x y z x y z x y z + + + + + + . Proof. With elementary calculus. Application 2.1. Let 1 1 1 1 ABCDA B C D be a rectangle parallelepiped with sides ,, abc and diagonal d . Prove that ( ) ( ) 3 6 3 3 3 3d a b c a b c + + + + . Application 2.2. In any triangle ABC the followings hold: 1) ( ) ( ) 3 2 2 4 2 2 3 4 2 3 6 p r Rr p p r Rr - - - - 2) ( ) ( ) 3 2 2 4 2 3 2 8 12 p r Rr p p Rr - - - 3) ( ) ( ) ( ) ( ) ( ) 3 2 3 3 2 2 3 4 2 4 4 12 R r p R r R r pR + - + + -
4) ( ) ( ) ( )( ) ( ) ( ) 3 3 2 2 2 2 2 2 38 2 2 4 3 6 R r p R r R r R r p Rr + - - - + - + 5) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 3 3 2 2 3 4 4 4 3 2 R r p R r R r p R r + - + + - + Proof. In Theorem 2 we take: { } , , x yz { }{ }{ } 2 2 2 2 2 2 ,, ; , , ; , , ; sin ,sin ,sin ; cos , cos , cos 2 2 2 2 2 2 a b c A B C A B C abc p ap bp c r r r ⎫⎧ - - - ⎬⎨ ⎬⎬ ⎭⎩ . Application 2.3. Let ABC be a rectangle triangle, with sides a b c > > then ( ) ( ) 3 6 3 3 3 24a a b c a b c + + + + Theorem 3. If 0, 1,2,..., k x k n > = , then 3 3 2 3 1 1 1 n n n k k k k k k n x x x = = = . Application 3.1 The following inequality is true: ( ) ( ) 3 3 2 0 1 2 n n k n n k C C n = + . Proof. In Theorem 3 we take , 0,1,2,..., . k k n x C k n = = . Application 3.2. In all tetrahedron ABCD holds: 1) 3 2 3 3 1 4 1 a a h r h 2) 3 2 3 3 1 2 1 a a r r r Proof. In Theorem 3 we take 1 2 3 4 1 1 1 1 , , , a b c d x x x x h h h h = = = = and 1 2 3 4 1 1 1 1 , , , a b c d x x x x r r r r = = = = . Application 3.3. If 1 n n k S k α α = = then ( ) ( ) 3 3 2 3 n n n nS S S α α α . Proof. In Theorem 3 we take , 0,1,2,..., . k x k k n α = = . Application 3.4. If k F denote Fibonacci numbers, then 3 3 1 1 2 1 n n n k k n FF F n F + = + - . Proof. In Theorem 3 we take , 1,2,..., . k k x F k n = = . References: [1] Mihály Bencze, Inequalities (manuscript), 1982. [2] Collection of “Octogon Mathematical Magazine”, 1993-2004. {Published in “Octogon Mathematical Journal”, Vol. 13, No. 1, 2005.}
About an Identity and its Applications Mihály Bencze and Florentin Smarandache Str. Hărmanului 6, 505600 Săcele, Jud. Braşov, Romania University of New Mexico, 200 College Road, Gallup, NM 87301, USA 3 3 4 Theorem 1. If x, y ∈ C then 2 ( x 2 + y 2 ) − ( x + y ) ( x 3 + y 3 ) = ( x − y ) ( x 2 + xy + y 2 ) . Proof. With elementary calculus. Application 1.1. If x, y ∈ C then ( 2 ( x + y ) − ( x + y ) ( x + y )) ( 2 ( x + y ) − ( x − y ) ( x − y )) = ( x − y ) ( x + x y + y ) 2 2 3 3 3 3 2 3 2 3 3 3 2 4 2 4 2 2 4 Proof. In Theorem 1 we replace y → − y , etc. Application 1.2. If x ∈ R then 4 ( sin x − cos x ) (1 + sin x cos x ) + ( sin x + cos x ) 3 ( sin 3 x + cos3 x ) = 2 Proof. In Theorem 1 we replace x → sin x, y → cos x 3 ( 4 ) ( ) Application 1.3. If x ∈ R then 2ch6 x − (1 + shx ) 1 + sh3 x = (1 + shx ) shx + ch 2 x . Proof. In Theorem 1 we replace x → 1, y → shx Application 1.4. If x, y ∈ C ( x ≠ ± y ) then 3 3 3 2 ( x 2 + y 2 ) − ( x + y ) ( x3 + y 3 ) ( x − y) 4 + 3 2 ( x 2 + y 2 ) − ( x − y ) ( x3 − y 3 ) ( x + y) 4 = 2 ( x2 + y 2 ) Application 1.5. If x, y ∈ C then 3 3 2 2 2 ( x 2 + y 2 ) − ( x + y ) ( x3 + y 3 ) x + xy + y + 3 3 2 2 2 ( x 2 + y 2 ) − ( x − y ) ( x3 − y 3 ) x − xy + y 3 = 2 ( x4 + 6 x2 y 2 + y 4 ) 3 Application 1.6. If x, y ∈ R then 2 ( x 2 + y 2 ) ≥ ( x + y ) ( x 3 + y 3 ) . (See Jószef Sándor, Problem L.667, Matlap, Kolozsvar, 9/2001.) Proof. See Theorem 1. 3 3 Theorem 2. If x, y , z ∈ R then 3 ( x 2 + y 2 + z 2 ) ≥ ( x + y + z ) ( x 3 + y 3 + z 3 ) . Proof. With elementary calculus. Application 2.1. Let ABCDA1 B1C1 D1 be a rectangle parallelepiped with sides a, b, c and 3 ( ) diagonal d . Prove that 3d 6 ≥ ( a + b + c ) a3 + b3 + c3 . Application 2.2. In any triangle ABC the followings hold: 3 1) 3 ( p 2 − r 2 − 4 Rr ) ≥ 2 p 4 ( p 2 − 3r 2 − 6 Rr ) 3 2) 3 ( p 2 − 2r 2 − 8 Rr ) ≥ p 4 ( p 2 − 12 Rr ) ( 2 3) 3 ( 4 R + r ) − 2 p 2 ) 3 ≥ ( 4R + r ) 3 (( 4R + r ) − 12 p R ) 3 2 3 4) 3 ( 8 R 2 + r 2 − p 2 ) ≥ ( 2 R − r ) ( 2 5) 3 ( 4 R + r ) − p 2 ) 3 3 ≥ ( 4R + r ) (( 2R − r ) (( 4R + r ) − 3 p ) + 6Rr ) 2 3 2 2 (( 4R + r ) − 3 p ( 2R + r )) 3 2 Proof. In Theorem 2 we take: { x, y , z } ∈ ⎧ A B C⎫ ⎧ A B C ⎫⎫ ⎧ ∈ ⎨{a, b, c} ; { p − a, p − b, p − c} ; {ra , rb , rc } ; ⎨sin 2 ,sin 2 ,sin 2 ⎬ ; ⎨cos 2 , cos 2 , cos 2 ⎬⎬ 2 2 2⎭ ⎩ 2 2 2 ⎭⎭ . ⎩ ⎩ Application 2.3. Let ABC be a rectangle triangle, with sides a > b > c then 3 24a 6 ≥ ( a + b + c ) ( a3 + b3 + c3 ) ⎛ n ⎞ ⎛ n ⎞ Theorem 3. If xk > 0, k = 1, 2,..., n , then n ⎜ ∑ xk2 ⎟ ≥ ⎜ ∑ xk ⎟ ⎝ k =1 ⎠ ⎝ k =1 ⎠ 3 ∑ (C ) n Application 3.1 The following inequality is true: 3 k n k =0 3 ∑x n 3 k . ⎛ C2nn ⎞ ≤ ( n + 1) ⎜ ⎟ . ⎝ 2 ⎠ k =1 3 Proof. In Theorem 3 we take xk = Cnk , k = 0,1, 2,..., n. . Application 3.2. In all tetrahedron ABCD holds: ⎛ 1 ⎞ ⎜∑ 2 ⎟ ha ⎠ 4 1) ⎝ ≥ 3 1 r ∑ h3 a ⎛ 1⎞ ⎜∑ 2 ⎟ ra ⎠ 2 2) ⎝ ≥ 3 1 r ∑ r3 a 1 1 1 1 Proof. In Theorem 3 we take x1 = , x2 = , x3 = , x4 = and ha hb hc hd 1 1 1 1 x1 = , x2 = , x3 = , x4 = . ra rb rc rd 3 3 Application 3.3. If S nα = ∑ k α then n ( S n2α ) ≥ ( S nα ) S n3α . n 3 3 k =1 Proof. In Theorem 3 we take xk = k α , k = 0,1, 2,..., n. . ⎛ FF ⎞ Application 3.4. If Fk denote Fibonacci numbers, then ∑ F ≤ n ⎜ n n +1 ⎟ . k =1 ⎝ Fn + 2 − 1 ⎠ Proof. In Theorem 3 we take xk = Fk , k = 1, 2,..., n. . 3 n 3 k References: [1] Mihály Bencze, Inequalities (manuscript), 1982. [2] Collection of “Octogon Mathematical Magazine”, 1993-2004. {Published in “Octogon Mathematical Journal”, Vol. 13, No. 1, 2005.}
Keep reading this paper — and 50 million others — with a free Academia account
Used by leading Academics
Thomas Britz
The University of New South Wales
Ibrahim Cahit
Near East University
Medha Huilgol
Bangalore University
Udayan Prajapati
St. Xavier's College, Ahmedabad