Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Volatility Notes

We look into problems related to volatility modelling, focusing on general properties of implied volatility surface and valuation of volatility products. This work contributes to the large body of existing literature by presenting several new results and providing alternative proofs of some existing ones. The paper is organised as a series of facts, centred around a common theme.

❱♦❧❛t✐❧✐t② ◆♦t❡s ❱❧❛❞✐♠✐r ▲✉❝✐❝ ◆♦✈❡♠❜❡r ✶✸✱ ✷✵✶✾ ❆❜str❛❝t ❲❡ ❧♦♦❦ ✐♥t♦ ♣r♦❜❧❡♠s r❡❧❛t❡❞ t♦ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧✐♥❣✱ ❢♦❝✉s✐♥❣ ♦♥ ❣❡♥❡r❛❧ ♣r♦♣❡rt✐❡s ♦❢ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ❛♥❞ ✈❛❧✉❛t✐♦♥ ♦❢ ✈♦❧❛t✐❧✐t② ♣r♦❞✉❝ts✳ ❚❤✐s ✇♦r❦ ❝♦♥tr✐❜✉t❡s t♦ t❤❡ ❧❛r❣❡ ❜♦❞② ♦❢ ❡①✐st✐♥❣ ❧✐t❡r❛t✉r❡ ❜② ♣r❡s❡♥t✐♥❣ s❡✈❡r❛❧ ♥❡✇ r❡s✉❧ts ❛♥❞ ♣r♦✈✐❞✐♥❣ ❛❧t❡r♥❛t✐✈❡ ♣r♦♦❢s ♦❢ s♦♠❡ ❡①✐st✐♥❣ ♦♥❡s✳ ❚❤❡ ♣❛♣❡r ✐s ♦r❣❛♥✐③❡❞ ❛s ❛ s❡r✐❡s ♦❢ ❢❛❝ts✱ ❝❡♥t❡r❡❞ ❛r♦✉♥❞ ❛ ❝♦♠♠♦♥ t❤❡♠❡✳ ❙❤❡♥t♦♥ ✶✳ ■♥ ❬✸✼❪ ✐t ✇❛s ♥♦t❡❞ t❤❛t ❢♦r x > 0 Z N (−x) = n(x) ∞ ✭✶✮ t2 e−xt e− 2 dt, 0 ✇❤✐❝❤ ✇❛s ✉s❡❞ ❢♦r ♦❜t❛✐♥✐♥❣ ♥✉♠❡r✐❝❛❧ ❛♣♣r♦①✐♠❛t✐♦♥s ❢♦r t❤❡ ❝✉♠✉❧❛t✐✈❡ ◆♦r♠❛❧ ❞✐str✐✲ ❜✉t✐♦♥✶ ✳ ❲❡ ♦❜s❡r✈❡ t❤❛t ✭✶✮ ✐s ✈❛❧✐❞ ❢♦r ❛❧❧ x ∈ R✳ ✷✳ ❙✐♥❝❡ ❢♦r x > 0 t❤❡ ✐♥t❡❣r❛❧ ♦♥ t❤❡ ❘❍❙ ♦❢ ✭✶✮ ✐s ❜♦✉♥❞❡❞ ❛❜♦✈❡ ❜② 1/x✱ t❤❡ ▼✐❧❧s✬ r❛t✐♦ ✐♥❡q✉❛❧✐t② 1 1 − N (x) < , x>0 ✭✷✮ n(x) x ❢♦❧❧♦✇s r❡❛❞✐❧②✳ ❇❧❛❝❦ ✫❙❝❤♦❧❡s ✈✐❛ ❙❤❡♥t♦♥ ✶✳ ■♥s❡rt✐♥❣ ✭✶✮ ✐♥t♦ t❤❡ t❤❡ ❇❧❛❝❦✲❙❝❤♦❧❡s P✉t ❢♦r♠✉❧❛ P✉t(K, F ) = KN (−d2 ) − F N (−d1 ), ❛❢t❡r ✉s✐♥❣ F n(d1 ) = Kn(d2 )✱ ❣✐✈❡s P✉t(K, F ) = Kn(d2 ) Z ∞ 0 t2 e−d2 t (1 − e−σt )e− 2 dt, ✭✸✮ ❛♥❞ s✐♠✐❧❛r❧② ❢♦r ❈❛❧❧(K, F ) = F N (d1 ) − KN (d2 ) ❈❛❧❧(K, F ) = F n(d1 ) ✶ ❋♦r ❛ ♠♦r❡ r❡❝❡♥t ❛❝❝♦✉♥t s❡❡ ❈❤❛♣t❡r ✶✹ ♦❢ ❬✶✶❪✳ Z ✶ ∞ 0 t2 ed1 t (1 − e−σt )e− 2 dt. ✭✹✮ ✷✳ ❲❡ ❝❛♥ ✇r✐t❡ ✭✸✮ ❛♥❞ ✭✹✮ ❛s✷ P✉t(K, F ) = Kφ(d2 , σ), ❈❛❧❧ = F φ(−d1 , σ), φ(x, y) ≡ n(x) Z ∞ 0 t2 e−xt (1 − e−yt )e− 2 dt, ✭✺✮ R∞ t2 ❛♥❞ ♥♦t❡ s✐♥❝❡ ❢♦r ❡✈❡r② x ∈ R✱ y > 0✱ φ(x, y) = √12π x (1 − exy e−yt )e− 2 dt✱ φ ✐s str✐❝t❧② ❞❡❝r❡❛s✐♥❣ ✐♥ t❤❡ ✜rst ❛♥❞ ✐s str✐❝t❧② ✐♥❝r❡❛s✐♥❣ ✐♥ t❤❡ s❡❝♦♥❞ ❛r❣✉♠❡♥t✳ ✸✳ ■♥ ❬✷✵❪ ✭s❡❡ ❛❧s♦ ❬✷✼❪✮ t❤❡ ❢♦❧❧♦✇✐♥❣ ❜♦✉♥❞ ✇❛s ❣✐✈❡♥✿ ∂ ∂K  P (K, F ) K  ≥ 0. ❲❡ ♥♦t✐❝❡ t❤❛t ✐♥ t❤❡ ❝❛s❡ ♦❢ ❝♦♥st❛♥t ✈♦❧❛t✐❧✐t② t❤✐s ✐♥❡q✉❛❧✐t② ✐♠♠❡❞✐❛t❡❧② ❢♦❧❧♦✇s ❢r♦♠ ✭✺✮ ❛♥❞ t❤❡ st❛t❡❞ ♠♦♥♦t♦♥✐❝✐t② ♦❢ φ✳ ✹✳ ❲❡ ♦❜s❡r✈❡ φ(x, y) = n(x)[R(x) − R(x + y)], ✇❤❡r❡ ✇❤❡r❡ R ✐s t❤❡ ▼✐❧❧s✬ ✱ R(x) ≡ r❛t✐♦ N (−x) n(x) ✳ x ∈ R, y > 0, ✺✳ ❙✐♥❝❡ 1 − e−a ≤ a✱ a ≥ 0✱ ❢r♦♠ ✭✺✮ ✇❡ ❤❛✈❡ φ(x, y) ≤ y n(x) [1 − xR(x)] , x ∈ R, y ≥ 0, ❚♦❣❡t❤❡r ✇✐t❤ ✭✺✮✱ t❤✐s ✐♥ t✉r♥ ②✐❡❧❞s ✉♣♣❡r ❜♦✉♥❞s ❢♦r P✉t ❛♥❞ ❈❛❧❧ ♣r✐❝❡s✱ s♦ t❤❡ ❝❧❛ss✐❝❛❧ ❧♦✇❡r ❜♦✉♥❞s ♦❢ t❤❡ ▼✐❧❧s✬ r❛t✐♦ ✭s❡❡✱ ❡✳❣✳✱ ❬✸✵❪✮ ②✐❡❧❞ ✉♣♣❡r ❜♦✉♥❞s ❢♦r ❖❚▼ P✉t ❛♥❞ ❈❛❧❧ ♣r✐❝❡s ❡①♣r❡ss❡❞ ✈✐❛ ❡❧❡♠❡♥t❛r② ❢✉♥❝t✐♦♥s✳ ❋♦r ✐♥st❛♥❝❡✱ t❤❡ ●♦r❞♦♥✬s ❜♦✉♥❞ x2x+1 < R(x)✱ x ≥ 0✱ ②✐❡❧❞s 1 φ(x, y) ≤ y n(x) 2 , x ≥ 0, y ≥ 0, ✭✻❛✮ x +1 ✇❤✐❧❡ t❤❡ ✭s❤❛r♣❡r✮ ❇✐r♥❜❛✉♠✬s ❜♦✉♥❞ √ 2 x2 +4+x √ φ(x, y) ≤ y n(x) √ < R(x)✱ x ≥ 0✱ ❣✐✈❡s x2 + 4 − x , x ≥ 0, y ≥ 0. x2 + 4 + x ✭✻❜✮ ❚❤✐s tr❛♥s❧❛t❡s ✐♥t♦ ❛♥ ❖❚▼ ✭K ≤ F e−σ /2 ✮ ✉♣♣❡r ❜♦✉♥❞s ❢♦r t❤❡ P✉t ❛♥❞ ❛♥ ❖❚▼ 2 ✭K ≥ F eσ /2 ✮ ✉♣♣❡r ❜♦✉♥❞s ❢♦r t❤❡ ❈❛❧❧ ♣r✐❝❡✳ ❚❤❡ ♣❡r❢♦r♠❛♥❝❡ ♦❢ t❤❡s❡ ❜♦✉♥❞s ✐s ✐❧❧✉str❛t❡❞ ✐♥ ❋✐❣✉r❡ ✶✳ 2 ✷ ❚❤❡ q✉❡st✐♦♥ ✏❤♦✇ ✇♦✉❧❞ ②♦✉ t❡❧❧ t❤❛t t❤❡ ❱❛♥✐❧❧❛ ♣r✐❝❡s ❛r❡ ♣♦s✐t✐✈❡✱ ✐❢ ②♦✉ ❞✐❞♥✬t ❦♥♦✇ t❤❡ ♣r♦❜❛❜✐❧✐st✐❝ ❝♦♥t❡①t❄✑ ❝❛♥ ♥♦✇ ❜❡ ❛♥s✇❡r❡❞ ✐♠♠❡❞✐❛t❡❧②✳ ✷ 0.08 Black-Scholes exact Gordon upper bound Birnbaum upper bound 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 1.0 1.2 1.4 1.6 K/F 1.8 2.0 ❋✐❣✉r❡ ✶✿ ❯♣♣❡r ❜♦✉♥❞s ❢♦r ✶❨✱ 20% ✈♦❧❛t✐❧✐t② ❈❛❧❧ ❜❛s❡❞ ♦♥ ▼✐❧❧s✬ r❛t✐♦ ❛♣♣r♦①✐♠❛t✐♦♥s ✻✳ ❚❛②❧♦r s❡r✐❡s ❡①♣❛♥s✐♦♥ ②✐❡❧❞s φ(z − y/2, y) = n(z − y/2) Z ∞ 0 t2 e−zt (eyt/2 − e−yt/2 )e− 2 dt = ∞ X y 2n+1 2n 2 (2n + 1)! n=0 Z ∞ t2 t2n+1 e−zt− 2 dt, 0 ✭✼✮ ✇❤✐❝❤ t♦❣❡t❤❡r ✇✐t❤ ✭✺✮ ❧❡❛❞s t♦ ❛ s❡r✐❡s ❡①♣❛♥s✐♦♥ ❢♦r P✉t ❛♥❞ ❈❛❧❧ ♣r✐❝❡s✳ ❙✐♥❝❡ ❛❧❧ t❤❡ t❡r♠s ✐♥ t❤❡ s❡r✐❡s ❛r❡ ♥♦♥✲♥❡❣❛t✐✈❡✱ t❤❡ r❡s✉❧t✐♥❣ ❡①♣❛♥s✐♦♥s ♣r♦✈✐❞❡ s❡q✉❡♥❝❡s ♦❢ ❧♦✇❡r ❜♦✉♥❞s ❢♦r ❊✉r♦♣❡❛♥ ❱❛♥✐❧❧❛ ♣r✐❝❡s✳ ✼✳ ❲❡ ♦❜s❡r✈❡ ❢r♦♠ ✭✼✮ t❤❛t t❤❡ ❆❚▼ ❈❛❧❧ ✈❛❧✉❡ ❛❞♠✐ts s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥ ∞  2 n X σ2 1 σ F . σe− 8 4 (2n + 1)!! 2π n=0 ✭✽❛✮ ❈❛❧❧(F, F ) = √ ❆♥ ❛❧t❡r♥❛t✐✈❡ ❡①♣❛♥s✐♦♥ ❝❛♥ ❜❡ ♠❛❞❡ ❜❛s❡❞ ♦♥ t❤❡ s❡r✐❡s N (x) = 21 + √12π x ∈ R✱ ✇❤✐❝❤ ❣✐✈❡s✸ ∞  2 n X (−1)n σ F √ . σ ❈❛❧❧(F, F ) = (2n + 1)(2n)!! 2π n=0 4 (−1)n x2n+1 n=0 (2n)!! 2n+1 ✱ P∞ ✭✽❜✮ ❚❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❜♦t❤ s❡r✐❡s ✐♥ ✭✽✮ ✭❢♦r ♣❛r❛♠❡t❡rs r❛♥❣❡ ♦❢ ♣r❛❝t✐❝❛❧ ✐♥t❡r❡st✮ ✐s r❛♣✐❞✿ ❡✈❡♥ ✇✐t❤ t❤❡ ✜rst t✇♦ t❡r♠s t❤❡ r❡❧❛t✐✈❡ ❡rr♦r ❢♦r ♣r✐❝✐♥❣ ❛♥ ❆❚▼ ❈❛❧❧ ✇✐t❤ t♦t❛❧ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② 100% ✐♠♣r♦✈❡s ❜② ❛♥ ♦r❞❡r ♦❢ ♠❛❣♥✐t✉❞❡ ❝♦♠♣❛r❡❞ t♦ t❤❡ ✉s✉❛❧ ❇r❡♥♥❡r ❛♥❞ ❙✉❜r❛❤♠❛♥②❛♠ ❛♣♣r♦①✐♠❛t✐♦♥ ❬✺❪ ✭✇❤✐❝❤ ✐s t❤❡ ✜rst t❡r♠ ✐♥ ✭✽❜✮✮✳ t✇♦ s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥s ♦❢ N (x) ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ✭✽✮ ✜rst ❛♣♣❡❛r❡❞ ✐♥ t❤❡ ▲❛♣❧❛❝❡✬s ❜♦♦❦ ❚❤é♦r✐❡ ✐♥ ✶✽✶✷✳ ❆ ❝♦♠♣❛r✐s♦♥ ♦❢ t❤❡ t✇♦ ❡①♣❛♥s✐♦♥s ②✐❡❧❞s t❤❡ ♥♦♥tr✐✈✐❛❧ ✐❞❡♥t✐t② (−2)k 1 = ✱ n ≥ 0✳ (2k+1)!!(n−k)! (2n+1)n! ✸ ❚❤❡ ❆♥❛❧②t✐q✉❡ ❞❡s Pr♦❜❛❜✐❧✐tés Pn k=0 ✸ ◆♦r♠❛❧✐③✐♥❣ ❱♦❧❛t✐❧✐t② ❚r❛♥s❢♦r♠s ❛♥❞ ✐♠♣❧✐❡❞ ♣r♦❜❛❜✐❧✐t② ❞❡♥s✐t② ✶✳ ❋♦❧❧♦✇✐♥❣ ❬✶✺❪✱ ✇❡ ❞❡✜♥❡ t❤❡ ♥♦r♠❛❧✐③✐♥❣ ✈♦❧❛t✐❧✐t② tr❛♥s❢♦r♠s σ(x) x σ(x) x − , f2 (x) := −d2 (x) = + , ✭✾✮ σ(x) 2 σ(x) 2 √ ✇❤❡r❡✱ x = ln(K/F )✱ σ := ✈♦❧❛t✐❧✐t② × T ✭s♦✲❝❛❧❧❡❞ t♦t❛❧ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t②✮✳ ❚❤❡♥✱ s✉♣♣r❡ss✐♥❣ t❤❡ x✲❛r❣✉♠❡♥t✱ f1 (x) := −d1 (x) = 1 f˙1 = (1 − σ̇f2 ), σ ✷✳ P✉t g := 12 (f1 + f2 ) ≡ x σ(x) ✳ 1 f˙2 = (1 − σ̇f1 ). σ ✭✶✵✮ ❲❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ r❡❧❛t✐♦♥s❤✐♣s ❞✉❛❧ t♦ ✭✶✵✮✿ ġ = 1 (1 − σ̇g), σ σ̇ = 1 (1 − ġσ). g ✭✶✶✮ ✸✳ ■t ✐s r❡❛❞✐❧② s❤♦✇♥ t❤❛t t❤❡ ❈❉❋ ❛♥❞ P❉❋ ♦❢ t❤❡ ❧♦❣✲s♣♦t X := ln(ST /F ) ❛r❡ ❣✐✈❡♥ ❜②✱ r❡s♣❡❝t✐✈❡❧② ✭s❡❡✱ ❡✳❣✳ ❬✶✺❪✮✱ P = N (f2 ) + σ̇ n(f2 ) ✭✶✷✮ ❛♥❞ p = n(f2 )(f˙2 − f2 f˙2 σ̇ + σ̈). ✭✶✸✮ p = n(f2 )(σ f˙1 f˙2 + σ̈), ✭✶✹✮ ❯s✐♥❣ ✭✶✵✮✱ t❤❡ ❡①♣r❡ss✐♦♥ ✐♥ ✭✶✸✮ ❝❛♥ ❜❡ ❢✉rt❤❡r s✐♠♣❧✐✜❡❞ t♦ ✹✳ ❆ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ σ ✐s ❝❛❧❧❡❞ s②♠♠❡tr✐❝ ✐❢ σ(x) = σ(−x)✱ x ∈ R✳ ✺✳ ❋♦r ❛ s②♠♠❡tr✐❝ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ✇❡ ❤❛✈❡ f1/2 (−x) = −f2/1 (x), f˙1/2 (−x) = f˙2/1 (x), x ∈ R. ✭✶✺✮ ✻✳ ■t ✐s r♦✉t✐♥❡ t♦ ✈❡r✐❢② t❤❛t ✉♥❝♦rr❡❧❛t❡❞ ▼❛r❦♦✈✐❛♥ st♦❝❤❛st✐❝ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧s ❣✐✈❡ r✐s❡ t♦ s②♠♠❡tr✐❝ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡s✳ ❇✉tt❡r✢② ❆r❜✐tr❛❣❡ ✶✳ ❋r♦♠ ✭✶✹✮ ❤❡ ♥♦✲❛r❜✐tr❛❣❡ ❝♦♥❞✐t✐♦♥ p ≥ 0✱ ❝❛♥ ❜❡ ❡①♣r❡ss❡❞ ✐♥ t❤❡ ♥♦r♠❛❧✐③❡❞ ❢♦r♠ ❛s ✭✶✻✮ f˙1 f˙2 + σ̈/σ ≥ 0. ✷✳ ❆s K 7→ ❈❛❧❧(K, F ) ✐s ❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥✱ K 7→ σ(K) ✐s ❛❧s♦ ❝♦♥t✐♥✉♦✉s ✭♥♦t❡❞ ✐♥ ❬✸✻❪✮✳ ✸✳ ■❢ ❛♥✲❛r❜✐tr❛❣❡✲❢r❡❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ σ ✐s ♣✐❡❝❡✇✐s❡ s♠♦♦t❤✱ σ̇ ❝❛♥♥♦t ❤❛✈❡ ♥❡❣❛t✐✈❡ ❥✉♠♣s✿ ✐♥ t❤✐s ❝❛s❡ t❤❡ ❡①♣r❡ss✐♦♥ ❢♦r t❤❡ ❈❉❋ ✭✶✷✮ ❜❡❝♦♠❡s P (x) = N (f2 (x)) + σ̇(x+) n(f2 (x)), ❤❡♥❝❡ t❤❡ ❝❧❛✐♠✳ ✹ x ∈ R, ✭✶✼✮ ✹✳ ❇② ❚❤❡♦r❡♠ ✷✳✽✳ ✐♥ ❬✶✺❪ ✭❛❧s♦ Pr♦♣♦s✐t✐♦♥ ✷✳✶ ❛♥❞ Pr♦♣♦s✐t✐♦♥ ✷✳✷ ✐♥ ❬✶✹❪✮ ❛ ♥❡❝❡ss❛r② f˙1 > 0✱ f˙2 > 0 ❋r♦♠ ✭✶✻✮ ✇❡ ❛❧s♦ ♦❜s❡r✈❡ f˙1 > 0✱ f˙2 > 0 ✐s ❛❧s♦ s✉✣❝✐❡♥t t♦ ♣r❡✈❡♥t t❤❡ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡ ∂2σ ∂σ s♣❛❝❡ σ̈ > 0 ❝♦rr❡s♣♦♥❞s t♦ ∂K 2 − ∂K > 0✮✳ ❚❤✐s ❛❧s♦ ❧✐♥❡s ✉♣ ✇✐t❤ ❝♦♥❞✐t✐♦♥ ❢♦r ❛❜s❡♥❝❡ ♦❢ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡ ✐s t❤❛t ✐❢ σ̈ > 0✱ t❤❡♥ ✭♥♦t❡ t❤❛t ✐♥ str✐❦❡ ♣r❛❝t✐t✐♦♥❡rs✬ ❡①♣❡r✐❡♥❝❡ ♦❢ t❤❡ ✏✇✐♥❣ ❝✉t✲♦✛s✑ ✐♥ t❤❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ✐♥tr♦❞✉❝✐♥❣ str✐❦❡ ❛r❜✐tr❛❣❡✱ ❛s t❤♦s❡ ❛r❡ t❤❡ ♣♦✐♥ts ✇✐t❤ ❧❛r❣❡ ♥❡❣❛t✐✈❡ ❝♦♥✈❡①✐t② ✭❛♥❞ ♦♥ t❤❡ r✐❣❤t ✇✐♥❣ ∂σ t②♣✐❝❛❧❧② ♣♦s✐t✐✈❡ ∂K ✮✳ ✺✳ ❚❤❡ str✐❝t ♠♦♥♦t♦♥✐❝✐t② ♦❢ f1 ❛♥❞ f2 ✐s ♥♦t s✉✣❝✐❡♥t t♦ ❡♥s✉r❡ ❛❜s❡♥❝❡ ♦❢ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡✱ ✇❤✐❝❤ ❝❛♥ ❜❡ s❡❡♥ ❛s ❢♦❧❧♦✇s✳ ❚❤❡ ♣r♦♦❢ ✐♥ ❬✶✺❪ s❤♦✇✐♥❣ t❤❛t t❤❡ ❛❜s❡♥❝❡ ♦❢ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡ ✐♠♣❧✐❡s ♠♦♥♦t♦♥✐❝✐t② ♦❢ s❧♦♣❡s ♦❢ C(K) ❛♥❞ P (K) f1 ✱ f2 ❤✐♥❣❡s ♦♥ t❤❡ ❢❛❝t t❤❛t ❢♦r ❛♥ ❛r❜✐tr❛❣❡✲❢r❡❡ s✉r❢❛❝❡ ❤❛✈❡ t♦ st❛② ✇✐t❤✐♥ [−1, 0] ❛♥❞ [0, 1] r❡s♣❡❝t✐✈❡❧② ✭✇❤✐❝❤ ✐s ❥✉st ❛ r❡st❛t❡♠❡♥t ♦❢ t❤❡ ❢❛❝t t❤❛t t❤❡ ❈❉❋ ♦❢ t❤❡ ❛ss❡t ♣r✐❝❡ ❤❛s t♦ ❜❡❧♦♥❣ t♦ ❛ C(K) ✇❤♦s❡ s❧♦♣❡ st❛②s ❜❡t✇❡❡♥ [−1, 0]✱ [0, 1]✮✳ ❚❤✉s✱ ❜✉t ✐s ♥♦t ♠♦♥♦t♦♥✐❝❛❧❧② ❞❡❝r❡❛s✐♥❣ ✭❤❡♥❝❡ ❛r❜✐tr❛❣❡❛❜❧❡✱ ❛s t❤❡ ❈❉❋ ✐s ♥♦t ♠♦♥♦t♦♥✐❝✮✱ ✇♦✉❧❞ st✐❧❧ ♣r♦❞✉❝❡ ♠♦♥♦t♦♥✐❝ f1 ✱ f2 ✳ ✻✳ ❲❡ ❛❧s♦ ♥♦t❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♥❡❝❡ss❛r② ❝♦♥❞✐t✐♦♥ ❢♦r t❤❡ ❛❜s❡♥❝❡ ♦❢ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡✿ (f1 + f2 )/2✱ g≡ ❛s t❤❡ ❛✈❡r❛❣❡ ♦❢ t✇♦ ✐♥❝r❡❛s✐♥❣ ❢✉♥❝t✐♦♥s✱ ❤❛s t♦ ❜❡ ✐♥❝r❡❛s✐♥❣✳ ❚❤✐s ❝❛♥ ❜❡ ✉s❡❢✉❧ ✐♥ r✉❧✐♥❣ ♦✉t s♦♠❡ ♣❛r❛♠❡tr✐❝ ❢♦r♠s ❛s ❛r❜✐tr❛❣❡❛❜❧❡✱ ❡✳❣✳ t❤❡ ♣✉r❡ ♣❛r❛❜♦❧✐❝ s❤❛♣❡ ✭❝✳❢✳ ❬✷❪✮✳ ✼✳ ❚❤❡ ❝❧❛ss✐❝❛❧ ❡①❛♠♣❧❡ ♦❢ ❛r❜✐tr❛❣❡❛❜❧❡ ✏r❛✇✧ ❙❱■ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ❞✉❡ t♦ ❆①❡❧ ❱♦❣t ✭❡✳❣✳ ❬✶✽❪✱ ❊①❛♠♣❧❡ ✸✳✶✮ ❝❛♥ ❛❧s♦ ❝❛♥ s❡r✈❡ t♦ ❡❧✉❝✐❞❛t❡ t❤❡ ♣r❡✈✐♦✉s ♣♦✐♥t ❛♥❞ ❞❡♠♦♥str❛t❡ ❞✐✛❡r❡♥t ✇❛②s ✐♥ ✇❤✐❝❤ t❤❡ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡ ❝❛♥ ❛r✐s❡✳ ❲❡ ❝♦♥s✐❞❡r t❤❡ ❙❱■ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ✭✐♥ t❤❡ ❧♦❣✲str✐❦❡ s♣❛❝❡✮ ✇✐t❤ n o p σ 2 (x) = a + b ρ(x − m) + (x − m)2 + σ 2 , (a, b, m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0, 3060, 0.4153)✳ ❚❤❡ ♥♦r♠❛❧✐③✐♥❣ ✈♦❧❛t✐❧✐t② tr❛♥s❢♦r♠s ❛♥❞ t❤❡✐r ❞❡r✐✈❛t✐✈❡s ❢♦r t❤❛t s✉r❢❛❝❡ ❛r❡ ❞✐s♣❧❛②❡❞ ✐♥ t❤❡ ❋✐❣✉r❡ ✷ ❜❡❧♦✇✳ 10 f1 f2 8 f1 f2 6 4 2 0 2 4 1.5 1.0 0.5 0.0 0.5 1.0 1.5 ❋✐❣✉r❡ ✷✿ ◆♦r♠❛❧✐③✐♥❣ ❱♦❧❛t✐❧✐t② ❚r❛♥s❢♦r♠s ❛♥❞ t❤❡✐r ❞❡r✐✈❛t✐✈❡s ✐♥ t❤❡ ❆①❡❧ ❱♦❣t ❡①❛♠♣❧❡ ✺ ❲❡ ♦❜s❡r✈❡ t❤❛t t❤❛t f1 ❜❡❝♦♠❡s ❞❡❝r❡❛s✐♥❣ ✐♥ t❤❡ ✐♥t❡r✈❛❧ [0.5, 1]✱ ✇❤✐❝❤ ❧❡❛❞s t♦ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡✳ ◆❡①t✱ ✇❡ ❢♦❝✉s ♦♥ s✉✣❝❡♥t ❛♥❞ ♥❡❝❡ss❛r② ❝♦♥❞✐t✐♦♥ ❢♦r ❛❜s❡♥❝❡ ♦❢ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡✱ ❛♥❞ t♦ t❤✐s ❡♥❞ ✐♥ ❋✐❣✉r❡ ✸ ✇❡ ❞✐s♣❧❛② t❤❡ p/n(d2 ) ≡ σ f˙1 f˙2 + σ̈ ✭s❡❡ ✭✶✹✮✮ ❛♥❞ σ̈ ✱ ③♦♦♠✐♥❣ ✐♥ ♦♥ [0.5, 1.5]✳ p n(d2) 0.8 f1 f2 + 0.6 0.4 0.2 0.0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 ❋✐❣✉r❡ ✸✿ σ f˙1 f˙2 + σ̈ ❛♥❞ σ̈ ✐♥ t❤❡ ❆①❡❧ ❱♦❣t ❡①❛♠♣❧❡ 1.0 ❋r♦♠ t❤❡ ❛❜♦✈❡ t✇♦ ♣❧♦ts ✇❡ ❝❧❡❛r❧② ♥♦t❡ ❛ r❡❣✐♦♥ ✇❤❡r❡ ❜♦t❤ f1 ❛♥❞ f2 ❛r❡ ✐♥❝r❡❛s✐♥❣✱ ❜✉t ✇❡ st✐❧❧ ❤❛✈❡ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡ ✭❞✉❡ t♦ ♥❡❣❛t✐✈❡ ❝♦♥✈❡①✐t② ♦❢ t❤❡ ❙❱■ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t②✮✳ ❚❤❡ r❡❛❞❡r ❝❛♥ r❡❛❞✐❧② ✈❡r✐❢② ✭♥✉♠❡r✐❝❛❧❧②✮ t❤❛t ❝❤❛♥❣✐♥❣ σ t♦ 0.47 ②✐❡❧❞s f1 ❛♥❞ f2 t❤❛t ❛r❡ ✐♥❝r❡❛s✐♥❣ ❡✈❡r②✇❤❡r❡✱ ✇❤✐❧❡ t❤❡ s✉r❢❛❝❡ st✐❧❧ ❡①❤✐❜✐ts ❜✉tt❡r✢② ❛r❜✐tr❛❣❡✳ ✽✳ ❆♥ ❛r❜✐tr❛❣❡✲❢r❡❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ σ ✐s s②♠♠❡tr✐③❛❜❧❡ ✐❢ ❜♦t❤ σ(|x|) ❛♥❞ σ(−|x|) ❛r❡ ❛r❜✐tr❛❣❡✲❢r❡❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡s✳ ✾✳ ❆ ❛r❜✐tr❛❣❡✲❢r❡❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ σ ✐s s②♠♠❡tr✐③❛❜❧❡ ✐✛ σ̇(x+) ≥ 0✱ σ̇(x−) ≤ 0 ❛♥❞ limx→−∞ f2 (x) = −∞✿ ❢r♦♠ ✭✶✼✮ ✇❡ ❤❛✈❡ t❤❛t t❤❡ t✇♦ P (x) ❝♦rr❡s♣♦♥❞✐♥❣ t♦ σ(|x|) ❛♥❞ σ(−|x|) ❛r❡ ♥♦♥✲❞❡❝r❡❛s✐♥❣ ✐✛ t❤❡ ❞❡r✐✈❛t✐✈❡s ❝♦♥❞✐t✐♦♥s ❤♦❧❞✱ ✇❤✐❧❡ ❢r♦♠ ✭❄❄✮ t❤❡✐r ❝♦rr❡❝t ❜♦✉♥❞❛r② ❜❡❤❛✈✐♦r ❛t ±∞ ✐s s❡❝✉r❡❞ ✐✛ t❤❡ ❧✐♠✐t ❝♦♥❞✐t✐♦♥ ❤♦❧❞s✳ ✶✵✳ ●✐✈❡♥ ❛♥ ❛r❜✐tr❛❣❡✲❢r❡❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ σ ❛♥❞ ❛♥② a < b s✉❝❤ t❤❛t 0 6∈ (a, b)✱ t❤❡r❡ ❡①✐sts ❛♥ ❛r❜✐tr❛❣❡✲❢r❡❡ s②♠♠❡tr✐❝ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ❝♦✐♥❝✐❞✐♥❣ ✇✐t❤ σ ♦♥ (a, b)✳ ❚♦ s❤♦✇ t❤✐s ✇❡ ✇❧♦❣ ❛ss✉♠❡ a > 0✱ ❛♥❞ st❛rt✐♥❣ ✇✐t❤ t❤❡ ❝❛❧❧ ♣r✐❝❡ C(K) ❝♦rr❡s♣♦♥❞✐♥❣ t♦ σ ✇❡ ❝♦♥str✉❝t C0 (K) ❝♦rr❡s♣♦♥❞✐♥❣ t♦ t❤❡ s②♠♠❡tr✐❝ s✉r❢❛❝❡ σ0 ✱ ✇✐t❤ σ0 (x) = σ(x)✱ x ∈ (a, b)✳ ❲❡ ❢♦r K ∈ [ea , eb ] ♣✉t C0 (K) := C(K)✱ ❢♦r K ∈ [1, ea ) ✇❡ ❧❡t C0 (K) ❜❡ t❤❡ t❛♥❣❡♥t ❛t t❤❡ ♣♦✐♥t K1 := ea t♦ t❤❡ ❝✉r✈❡ C(·)✱ ❛♥❞ ❢♦r K ∈ (eb , ∞) ✇❡ ❧❡t C0 ❜❡ t❤❡ ♠❛①✐♠✉♠ ♦❢ ③❡r♦ ❛♥❞ t❤❡ t❤❡ t❛♥❣❡♥t ❛t t❤❡ ♣♦✐♥t K2 := eb t♦ t❤❡ ❝✉r✈❡ C(·)✳ ❋✐♥❛❧❧②✱ ❢♦r K ∈ [0, 1) ✇❡ ❧❡t C0 (K) := C0 (1/K)✳ ■t ✐s r♦✉t✐♥❡ t♦ ✈❡r✐❢② t❤❛t C0 s✉❝❤ t❤❛t ✐ts ❝♦rr❡s♣♦♥❞✐♥❣ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② σ0 ✐s s②♠♠❡tr✐❝✱ ♣✐❡❝❡✇✐s❡ s♠♦♦t❤ ❛♥❞ ❣✐✈❡s r✐s❡ t♦ P (·) ✐♥ ✭✶✼✮ ✇❤✐❝❤ ✐s ♥♦♥✲❞❡❝r❡❛s✐♥❣ ❛♥❞ ✇✐t❤ limx→−∞ P (x) = 0✱ limx→∞ P (x) = 1✳ ✶✶✳ ❚❤❡ ❢❛❝t t❤❛t ❢♦r ❛ s♠♦♦t❤ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ✉♥❞❡r t❤❡ ❛❜s❡♥❝❡ ♦❢ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡ f1 ❛♥❞ f2 ❛r❡ ✐♥❝r❡❛s✐♥❣ ✇❛s ❡st❛❜❧✐s❤❡❞ ✐♥ ❬✶✹❪✱ ❬✶✺❪✳ ■t ❝❛♥ ❜❡ ❛❧t❡r♥❛t✐✈❡❧② ❞❡❞✉❝❡❞ ❛s ❢♦❧❧♦✇s✳ ✻ ❋♦r ❛♥ ❛r❜✐tr❛❣❡ ❢r❡❡✲✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ σ ❢r♦♠ t❤❡ ♠♦♥♦t♦♥✐❝✐t② ♣r♦♣❡rt✐❡s ♦❢ φ(·) ✐♥✭✺✮ ✇❡ ♦❜s❡r✈❡ t❤❛t f2 ✐♥ ✐♥❝r❡❛s✐♥❣ ✇❤❡r❡ σ̇ < 0 ❛♥❞ f1 ✐s ✐♥❝r❡❛s✐♥❣ ✇❤❡r❡ σ̇ > 0✳ ❋♦r ❛♥ ❛r❜✐tr❛r② x 6= 0 ✇❡ ❝❛♥ ❝♦♥str✉❝t ❛ s②♠♠❡tr✐❝ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ σ0 ✇✐t❤ σ0 (x) = σ(x)✳ ❯s✐♥❣ ✭✶✺✮ ❛♥❞ t❤❡ ❢❛❝t t❤❛t σ̇(x) = −σ̇0 (x) ✇❡ ❢✉rt❤❡r ❞❡❞✉❝❡ t❤❛t f2 ✐♥ ❛❧s♦ ✐♥❝r❡❛s✐♥❣ ✇❤❡r❡ σ̇ > 0 ❛♥❞ f1 ✐s ❛❧s♦ ✐♥❝r❡❛s✐♥❣ ✇❤❡r❡ σ̇ < 0✱ ✇❤❡♥❝❡ t❤❡ r❡s✉❧t ❢♦❧❧♦✇s ❜② t❤❡ ❝♦♥t✐♥✉✐t② ♦❢ f˙1 ❛♥❞ f˙2 ✳ ❘♦❣❡r ▲❡❡✬s ✉♣♣❡r ❜♦✉♥❞s ✶✳ ■♥ ❬✷✽❪ ✐t ✇❛s s❤♦✇♥ t❤❛t ✐♥ t❤❡ ❛❜s❡♥❝❡ ♦❢ ❧❛r❣❡✲str✐❦❡ t❛✐❧ ❛r❜✐tr❛❣❡✱ limK→∞ C(K, F ) = 0✱ t❤❡r❡ ❡①✐sts x∗ > 0 s✉❝❤ t❤❛t √ σ(x) < x > x∗ . 2x, ❯♥❞❡r t❤❡ ✭str♦♥❣❡r✮ ❝♦♥❞✐t✐♦♥ ♦❢ t❤❡ ❛❜s❡♥❝❡ ♦❢ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡✱ t❤❡ ❡①❛❝t ✈❛❧✉❡ ♦❢ x∗ ❝❛♥ ❜❡ ❞❡t❡r♠✐♥❡❞✿ s✐♥❝❡ f1 ♠♦♥♦t♦♥✐❝✱ ✇✐t❤ limx→−∞ f1 (x) = −∞✱ limx→∞ f1 (x) = ∞ x ✭❝✳❢✳ ❘❡♠❛r❦ ✷✳✷ ♦❢ ❬✸✷❪✮✱ ✐t ❤❛s ❛ ✉♥✐q✉❡ ③❡r♦ x0 > 0✱ ❢♦r ✇❤✐❝❤ σ(x) − 21 σ(x) > 0✱ ❢♦r ∗ x > x0 ✳ ❚❤✉s✱ ❢♦r ❛♥ ❛r❜✐tr❛❣❡✲❢r❡❡ s✉r❢❛❝❡✱ x ✐♥ t❤❡ ❘♦❣❡r ▲❡❡ ✉♣♣❡r ❜♦✉♥❞ ✐s t❤❡ ✉♥✐q✉❡ ③❡r♦ ♦❢ f1 ✳ ✷✳ ❇② ❛♥❛❧♦❣♦✉s r❡❛s♦♥✐♥❣ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t σ(x) < ✭✉♥✐q✉❡✮ ③❡r♦ ♦❢ f2 ✱ ♣r♦✈✐❞❡❞ t❤❛t ♦♥❡ ❡①✐sts✹ ✳ p 2|x|✱ x < x∗ ✱ ✇❤❡r❡ x∗ < 0 ✐s t❤❡ ✸✳ ❲❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❜♦✉♥❞ ❞✉❡ t♦ ❍✐❝❤❛♠ ❇❛ss♦✉ ❬✸❪✱ ✇❤✐❝❤ ✐♥ t❤❡ ❛❜s❡♥❝❡ ♦❢ ❜✉tt❡r✢② ❛r❜✐tr❛❣❡ ❤♦❧❞s ❢♦r ❡✈❡r② x✿ σ(0) + σ(x) ≤ 2 r σ 2 (0) + 2|x|. 4 ❋♦r x ≥ 0 t❤❡ ❜♦✉♥❞ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❢❛❝t t❤❛t f1 (0) ≤ f1 (x)✳ ■t ✐s ❡①t❡♥❞❡❞ t♦ x < 0 ❜② ❝♦♥s✐❞❡r✐♥❣ t❤❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ σ(−x) ✭♦r✱ ❡q✉✐✈❛❧❡♥t❧②✱ ✉s✐♥❣ f2 (x) < f2 (0)✱ x < 0✮✳ ❈♦♠♣❛❝t ❉✉♣✐r❡ ❋♦r♠✉❧❛ ✶✳ ❋r♦♠ ✭✶✹✮ ✇❡ ❣❡t ❛ ❝♦♠♣❛❝t ✈❡rs✐♦♥ ♦❢ t❤❡ ❉✉♣✐r❡ ❢♦r♠✉❧❛✿ σl2 (x, T ) = 2∂T σ , σ∂x f1 ∂x f2 + ∂xx σ √ ✇❤❡r❡ σl (x, T ) := ❧♦❝❛❧ ✈♦❧❛t✐❧✐t② × T ✳ ❆r❜✐tr❛❣❡ ❜♦✉♥❞s ✶✳ ❚❤❡ ❢♦❧❧♦✇✐♥❣ ❜♦✉♥❞ ❝❛♥ ❜❡ ❢♦✉♥❞ ✐♥ ❬✶✺❪✿ 1 . sign(x)σ̇ < p 2|x| ❈♦♠❜✐♥✐♥❣ ✭✶✶✮✱ ✭✶✽✮ ❛♥❞ t❤❡ ▲❡❡ ❜♦✉♥❞ σ(x) < s✉✣❝✐❡♥t❧② ❧❛r❣❡ ♣♦s✐t✐✈❡ x √ p g + ġ > 2x, g + ġ < − p 2|x|. ✭✶✽✮ 2|x| ❢♦r x ❧❛r❣❡ ❡♥♦✉❣❤✱ ✇❡ ❣❡t ❢♦r ❛♥❞ ❢♦r s✉✣❝✐❡♥t❧② s♠❛❧❧ ♥❡❣❛t✐✈❡ x ✹ ❯♥❧✐❦❡ ✇✐t❤ f ✱ t❤❡ ❛❜s❡♥❝❡ ♦❢ ❛r❜✐tr❛❣❡ ❞♦❡s ♥♦t ✐♠♣❧② lim x→−∞ f2 (x) = −∞✱ ✐♥ ❢❛❝t ✭s❡❡✱ ❡✳❣✳✱ Pr♦♣♦s✐✲ 1 t✐♦♥ ✷✳✹ ♦❢ ❬✶✹❪✮✱ limx→−∞ f2 (x) = N −1 (P(ST = 0))✱ ❤❡♥❝❡ f2 ♠❛② ♥♦t ❤❛✈❡ ❛ ③❡r♦✳ ✼ ❙✉r❢❛❝❡ s❤✐❢ts ✶✳ ●✐✈❡♥ t❤❡ ❛r❜✐tr❛❣❡✲❢r❡❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡✱ t❤❡r❡ ❡①✐sts ✭✏❜✉♠♣❡❞✑✮ s✉r❢❛❝❡ B(x) = σ(x) + c ✐s ❛r❜✐tr❛❣❡❛❜❧❡✳ c>0 s✉❝❤ t❤❛t t❤❡ ♣❛r❛❧❧❡❧✲s❤✐❢t❡❞ ❚♦ s❡❡ t❤❛t✱ ♣✉t A(x, c) := d dx  x σ(x)+c  ✱ 1 2 σ̇(x)✱ ❛♥❞ ♥♦t❡ ❢r♦♠ ✭✶✻✮ t❤❡ ♥♦✲❛r❜✐tr❛❣❡ ❝♦♥❞✐t✐♦♥ ❢♦r t❤❡ s❤✐❢t❡❞ s✉r❢❛❝❡ r❡❛❞s A2 (x, c) − B 2 (x) + σ̈(x) > 0. σ(x) + c σ̈(x) x ❛s c → ∞ ❜♦t❤ A2 (x, c) ❛♥❞ σ(x)+c ❣♦ t♦ ③❡r♦ ✭❡①❝❡♣t ✐♥ t❤❡ ❞❡❣❡♥❡r❛t❡ ❝❛s❡ ✇❤❡r❡ σ(x) ✐s t❤❡ ❉✐r❛❝ ❞❡❧t❛ ❢✉♥❝t✐♦♥ ❛t x✮✱ ✇❡ s❡❡ t❤❛t ❢♦r ❛♥② x ❜✉tt❡r✢② ❛r❜✐tr❛❣❡ ❝❛♥ ❜❡ ✐♥tr♦❞✉❝❡❞ ❜② ❛♣♣❧②✐♥❣ ❧❛r❣❡ ❡♥♦✉❣❤ c✳ ❙✐♥❝❡ ❢♦r ❛♥② ✜①❡❞ ✷✳ ❆♥ ❡♥t✐r❡❧② ❛♥❛❧♦❣♦✉s r❡❛s♦♥✐♥❣ ✭❡①❝❧✉❞✐♥❣ t❤❡ s❛♠❡ ❞❡❣❡♥❡r❛t❡ ❝❛s❡s✮ ❧❡❛❞s t♦ t❤❡ ❝♦♥❝❧✉✲ s✐♦♥ t❤❛t ❡✈❡r② ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ❝❛♥ ❜❡ ♠❛❞❡ ❧♦❝❛❧❧② ❛r❜✐tr❛❣❡❛❜❧❡ ❛t ❛♥② ❧❛r❣❡ ❡♥♦✉❣❤ ♠✉❧t✐♣❧✐❝❛t✐✈❡ ❜✉♠♣ ❛r❜✐tr❛❣❡✲❢r❡❡ ❛t ❛♥② x cσ(x)✱ c > 0✱ ❜② t❛❦✐♥❣ ❛ s♠❛❧❧ ❡♥♦✉❣❤ ♠✉❧t✐♣❧✐❝❛t✐✈❡ ❜✉♠♣ ✽ x ❜② ♠❛❦✐♥❣ ❛ ❛♥❞ t❤❛t ❡✈❡r② s✉r❢❛❝❡ ❝❛♥ ❜❡ ♠❛❞❡ ❧♦❝❛❧❧② cσ(x)✱ c > 0✳ ❇❛rr✐❡rs ❛♥❞ s②♠♠❡tr✐❝ s♠✐❧❡ ❙✉♣♣♦s❡ ✇❡✬r❡ ✐♥ t❤❡ ③❡r♦ ✐♥t❡r❡st r❛t❡s ✇♦r❧❞✱ ❛♥❞ ❝♦♥s✐❞❡r t❤❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ❣❡♥❡r❛t❡❞ ❜② ❛ st♦❝❤❛st✐❝ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧ ✇✐t❤ ③❡r♦ s♣♦t✲✈♦❧❛t✐❧✐t② ❝♦rr❡❧❛t✐♦♥✳ ❚❤❡♥ t❤❡ ❧♦❝❛❧ ✈♦❧❛t✐❧✐t② ❛♥❞ st♦❝❤❛st✐❝ ✈♦❧❛t✐❧✐t② ♣r✐❝❡ ♦❢ ❞♦✇♥✲❛♥❞✲♦✉t ❝❛❧❧ ✇✐t❤ str✐❦❡ K ❛♥❞ ❜❛rr✐❡r B ❜❛s❡❞ ♦♥ t❤❛t s✉r❢❛❝❡ ❛r❡ t❤❡ s❛♠❡✳ ❈❧❛✐♠ ✶✳ ❇② ❝❤❛♥❣✐♥❣ t❤❡ ♥✉♠❡r❛✐r❡ t♦ s♣♦t ✐♥ st♦❝❤❛st✐❝ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧ ✇❡ ❣❡t ❈❛❧❧(B 2 /S, K) = K/B P✉t(S, B 2 /K)✳ ❚❤✐s ②✐❡❧❞s Pr♦♦❢✳ ❉❖❙t♦❝❤❱♦❧(S, K, B) = ❈❛❧❧(S, K) − K/B P✉t(S, B 2 /K) ✭t❤✐s ✐s ❞❡✲❢❛❝t♦ ❬✶❪✮✳ ■♠♣❧✐❡❞ ✈♦❧ ❣❡♥❡r❛t❡❞ ❜② t❤❡ ③❡r♦✲❝♦rr❡❧❛t✐♦♥ st♦❝❤❛st✐❝ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧ ✐s ❧♦❣✲s②♠♠❡tr✐❝❀ ❜② ✐♥s♣❡❝t✐♦♥ ♦❢ t❤❡ ❧♦❝❛❧ ✈♦❧ ❢♦r♠✉❧❛✱ ✇❡ s❡❡ t❤❛t t❤❡ s❛♠❡ ❤♦❧❞s ❢♦r t❤❡ ❝❛❧✐❜r❛t❡❞ ❧♦❝❛❧ ✈♦❧❛t✐❧✐t②✳ ❚❤❡r❡❢♦r❡✱ ❛s σ❧♦❝ (s, t) = σ❧♦❝ (1/s, t)✱ ❛❢t❡r t❤❡ ❝❤❛♥❣❡ ♦❢ ♥✉♠❡r❛✐r❡ t♦ S ✐♥ E[max(ST − K, 0)]✱ ✇❡ ❣❡t S/B ❈❛❧❧(B 2 /S, K) = K/B P✉t(S, B 2 /K). ✭✶✾✮ ❚❤❡r❡❢♦r❡✱ S/B ❈❛❧❧(B 2 /S, K) s♦❧✈❡s t❤❡ ✈❛❧✉❛t✐♦♥ P❉❊✱ ❤❡♥❝❡ ❈❛❧❧(S, K) − S/B ❈❛❧❧(B 2 /S, K) ✭✷✵✮ s♦❧✈❡s t❤❡ ✈❛❧✉❛t✐♦♥ P❉❊ ❛s ✇❡❧❧✳ ❙✐♥❝❡✱ ✐♥ ❛❞❞✐t✐♦♥✱ ✐t ❤❛s r✐❣❤t ❜♦✉♥❞❛r② ❝♦♥❞✐t✐♦♥s✱ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t ✭✷✵✮ ✐s t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ❜❛rr✐❡r ♦♣t✐♦♥ ✐♥ t❤❡ ❧♦❝❛❧ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧✳ ❚❤✉s ❢r♦♠ ✭✶✾✮ ✇❡ ❤❛✈❡ ❉❖▲♦❝❛❧❱♦❧(S, K, B) = ❈❛❧❧(S, K) − K/B P✉t(S, B 2 /K) ❚❤❡r❡❢♦r❡✱ s✐♥❝❡ t❤❡ ❜♦t❤ ♠♦❞❡❧s ❝❛❧✐❜r❛t❡ t♦ t❤❡ s❛♠❡ s✉r❢❛❝❡✱ ❉❖❙t♦❝❤❱♦❧(S, K, B) = ❉❖▲♦❝❛❧❱♦❧(S, K, B). ▲♦❣ ❈♦♥tr❛❝t ✈❛❧✉❛t✐♦♥ ✶✳ ❚❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ▲♦❣ ❈♦♥tr❛❝t ❝❛♥ ❜❡ ❝♦♠♣✉t❡❞ ✈✐❛ t❤❡ ❈r✐ss✲▼♦r♦❦♦✛ ❢♦r♠✉❧❛ ✭❡✳❣✳ ❬✶✼❪✱ ❬✾❪✮✺ ✿ Z E[ln(ST /F )] = 1 2 ∞ ✭✷✶✮ σ 2 (x)n(d2 (x))d˙2 (x) dx. −∞ ❍❡r❡ ✇❡ ♣r♦✈✐❞❡ ❛ q✉✐❝❦ ❞❡r✐✈❛t✐♦♥ ❢♦r ❝♦♠♣❧❡t❡♥❡ss✳ ❲✐t❤ P ❜❡✐♥❣ t❤❡ ❈❉❋ ♦❢ ln(ST /F ) ❣✐✈❡♥ ✐♥ ✭✶✷✮✱ ✇❡ ❤❛✈❡ ✭s✉♣♣r❡ss✐♥❣ t❤❡ x✲❞❡♣❡♥❞❡♥❝❡✮✱ Z b a xṖ dx = − Z b xn(d2 )d˙2 dx + a = (xσ̇ − σ)n(d2 ) ✺ ■t b a − Z Z b a b a x d(σ̇n(d2 )) = − Z b xn(d2 )d˙2 dx + xσ̇n(d2 ) a n(d2 )d˙2 (x + σd2 ) dx = (xσ̇ − σ)n(d2 ) ✇❤❡♥❝❡ t❤❡ r❡s✉❧t ❢♦❧❧♦✇s ❜② t❛❦✐♥❣ a → −∞✳✱ b → ∞✳ s❤♦✉❧❞ ❜❡ ♥♦t❡❞ t❤❛t ❜② t❤❡ ❏❡♥s❡♥✬s ✐♥❡q✉❛❧✐t② E[ln(ST /F )] ≤ ln E[ST /F ] = 0✳ ✾ b a + Z b a b a − Z b n(d2 ) dσ a 2 σ n(d2 )d˙2 dx, 2 ✭✷✷✮ ✷✳ ◆✉♠❡r✐❝❛❧ ✈❛❧✉❛t✐♦♥ ♦❢ t❤❡ ▲♦❣ ❈♦♥tr❛❝t ❝❛♥ ❜❡ ❛❧s♦ ❡✛❡❝t❡❞ ✉s✐♥❣ s♦✲❝❛❧❧❡❞ ✏▼❛r❦♦✈ Φ(Z) ❋✉♥❝t✐♦♥❛❧✑✱ ✇❤✐❝❤ ❢♦r ❛ ✜①❡❞ T ✐s t❤❡ ❢✉♥❝t✐♦♥ Φ s✉❝❤ t❤❛t F e ✱ Z ∼ N (0, 1)✱ ❤❛s t❤❡ −1 s❛♠❡ ❞✐str✐❜✉t✐♦♥ ❛s ST ✳ ■t ✐s r♦✉t✐♥❡❧② ✈❡r✐✜❡❞ t❤❛t Φ(x) ≡ P (N (x))✱ ✇❤❡r❡ P ✐s t❤❡ ❈❉❋ ♦❢ ln(ST /F ) ❣✐✈❡♥ ✐♥ ✭✶✷✮✳ ❚❤✉s t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ▲♦❣ ❈♦♥tr❛❝t ❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ ❛s E[ln(ST /F )] = E[Φ(Z)] = Z ∞ P −1 (N (x))n(x) dx = −∞ Z ✻ 1 P −1 (u) du. ✭✷✸✮ 0 ✸✳ ❆ ♣❛rt✐❝✉❧❛r❧② ❡✣❝✐❡♥t ♥✉♠❡r✐❝❛❧ ✈❛❧✉❛t✐♦♥ ♦❢ t❤❡ ▲♦❣ ❈♦♥tr❛❝t ❝❛♥ ❜❡ ♠❛❞❡ ❜❛s❡❞ ♦♥ ✭✷✸✮ −1 ❛♥❞ ●❛✉ss✐❛♥ q✉❛❞r❛t✉r❡✳ ❚❤❡ ✐♥t❡❣r❛♥❞ P (N (x)) ≡ (N −1 (P (x)))−1 ❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ N ✈✐❛ ♠♦♥♦t♦♥✐❝ s♣❧✐♥❡s✱ ✇❤❡r❡ t❤❡ ♦r❞✐♥❛t❡ ✐s ❝❤♦s❡♥ ❛s ❛♥ ❡q✉✐❞✐st❛♥t s❡t ♦❢ ♣♦✐♥ts (xi )i=1 −1 t❤❡ ❛❜s❝✐ss❛ ✐s ❣❡♥❡r❛t❡❞ ❛s N (P (xi ))✳ ❚❤✐s ♣r♦❝❡❞✉r❡ ❛✈♦✐❞s t❤❡ ❡①♣❡♥s✐✈❡ ❝❛❧❝✉❧❛t✐♦♥ ♦❢ t❤❡ ✐♥✈❡rs❡ ♦❢ ❈❉❋✱ ✇✐t❤ ❛❝❝✉r❛❝② ❝♦♥tr♦❧❧❡❞ ❜② t❤❡ ♥✉♠❜❡r ♦❢ t❤❡ ♣♦✐♥ts ✐♥ t❤❡ s♣❧✐♥❡ ❛♥❞ t❤❡ ♦r❞❡r ♦❢ t❤❡ ●❛✉ss✐❛♥ q✉❛❞r❛t✉r❡✳ ▲♦❣ ❈♦♥tr❛❝t ❙❦❡✇ ❉❡❧t❛ ✶✳ ❲❤✐❧❡ t❤❡ ✢❛t ✈♦❧❛t✐❧✐t② ▲♦❣ ❈♦♥tr❛❝t ❤❛s ♥♦ s❡♥s✐t✐✈✐t② t♦ t❤❡ ❝❤❛♥❣❡s ✐♥ ✈❛❧✉❡ ♦❢ t❤❡ ✉♥❞❡r❧②✐♥❣ ❢♦r✇❛r❞✱ t❤✐s ✐s ♥♦t ♥❡❝❡ss❛r✐❧② t❤❡ ❝❛s❡ ✐♥ ♣r❡s❡♥❝❡ ♦❢ s❦❡✇✳ ❲✐t❤ r❡s♣❡❝t t♦ t❤❡ ❛ss✉♠❡❞ ❜❡❤❛✈✐♦✉r ♦❢ t❤❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ✇❤❡♥ t❤❡ ❢♦r✇❛r❞ ♠♦✈❡s✱ ✇❡ ❞✐st✐♥❣✉✐s❤ ❙t✐❝❦② ❙tr✐❦❡ ❛♥❞ ❙t✐❝❦② ❉❡❧t❛ ❜❡❤❛✈✐♦✉r ✭❢♦r ❛ ❝♦♠♣❧❡t❡ ❛❝❝♦✉♥t ♦♥ ♠♦❞❡❧✐♥❣ ❛ss✉♠♣t✐♦♥s ❢♦r ❉❡❧t❛ ❝❛❧❝✉❧❛t✐♦♥ ❛♥❞ t❤❡✐r r❛♠✐✜❝❛t✐♦♥s✱ t❤❡ r❡❛❞❡r ✐s r❡❢❡rr❡❞ t♦ ❬✷✾❪✱ ❬✶✻❪✱ ❛♥❞ ❬✹❪✮✳ ✭❛✮ ■♥ t❤❡ ❙t✐❝❦②✲❉❡❧t❛ ❜❡❤❛✈✐♦✉r ✐t ✐s ❛ss✉♠❡❞ t❤❛t ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ r❡♠❛✐♥s ✏❛♥❝❤♦r❡❞✑ ❛t t❤❡ ❢♦r✇❛r❞✱ ✐✳❡✳ ✇❤❡♥ ❢♦r✇❛r❞ ♠♦✈❡s ❢r♦♠ t♦ σ̂ σ̂(K/F̂ ) ≡ σ(K/F )✳ s✉❝❤ t❤❛t F t♦ F̂ ✱ t❤❡ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② ❝❤❛♥❣❡s ❚❤✐s ✐♠♣❧✐❡s t❤❛t t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ❧♦❣✲s♣♦t r❡♠❛✐♥s t❤❡ s❛♠❡ ❛❢t❡r t❤❡ ♠♦✈❡ ♦❢ t❤❡ ❢♦r✇❛r❞✱ t❤❡r❡❢♦r❡ t❤❡ ❙t✐❝❦② ❉❡❧t❛ ♦❢ t❤❡ ▲♦❣ ❈♦♥tr❛❝t ✐s ③❡r♦✳ ✭❜✮ ■♥ t❤❡ ❙t✐❝❦②✲❙tr✐❦❡ ❜❡❤❛✈✐♦✉r✱ ✐t ✐s ❛ss✉♠❡❞ t❤❛t t❤❡ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ r❡♠❛✐♥s ✉♥✲ F σ(K)✳ ❝❤❛♥❣❡❞✱ ✐✳❡✳ ✇❤❡♥ ❢♦r✇❛r❞ ♠♦✈❡s ❢r♦♠ ❱❛♥✐❧❧❛ ♦♣t✐♦♥ str✉❝❦ ❛t K ❛♥❞ ♣✉t 1 L(F ) := 2 Z r❡♠❛✐♥s ∞ t♦ F̂ ✱ t❤❡ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② ♦❢ ❛ ❊✉r♦♣❡❛♥ ❚♦ ❝❛❧❝✉❧❛t❡ ❉❡❧t❛ ✐♥ t❤✐s ❝❛s❡✱ ✜① σ̄ 2 (K)n(d2 (K, F )) 0 ∂d2 (K, F ) dK, ∂K 1 σ̄(K) ≡ σ(ln(K/F0 ))✱ d2 (K, F ) ≡ ln(F/K) σ̄(K) − 2 σ̄(K)✳ ▼♦r♦❦♦✛ ❢♦r♠✉❧❛ ✭✷✶✮ t❤❛t E[ln(ST /F0 )] = L(F0 )✱ ❛♥❞ t❤❛t dL ❛t t❤❡ ❢♦r✇❛r❞ ✈❛❧✉❡ F0 ✐s dF (F0 )✳ ❋r♦♠ ✭✷✹✮ ✇❤❡r❡ dL =− 2 dF ❯s✐♥❣ ∂d2 ∂F 1 F = Z Z ∞ 0 ∂d2 ∂d2 σ̄ n(d2 )d2 dK + ∂K ∂F 2 1 F σ̄ ✇❡ ✇r✐t❡ ∞ σ̄ 2 n(d2 ) d 0 I2 Z ∞ σ̄ 2 n(d2 ) 0 F > 0, F0 > 0 ✭✷✹✮ ❲❡ ♥♦t❡ ❜② t❤❡ ❈r✐ss✲ t❤❡ ❙t✐❝❦②✲❙tr✐❦❡ ❉❡❧t❛ ∂ 2 d2 dK =: I1 + I2 ∂K∂F ✭✷✺✮ ❛s 1 1 = σ̄n(d2 ) σ̄(K) F ∞ 0 − 2 F Z ∞ 0 dσ̄ n(d2 ) dK − I1 , dK ✻ ◆♦t❡ t❤❛t t❤❡ ❡q✉❛❧✐t② ❜❡t✇❡❡♥ ✭✷✷✮ ❛♥❞ ✭✷✸✮ ✐s ❛ ❝♦♥s❡q✉❡♥❝❡ ♦❢ t❤❡ ❡q✉❛❧✐t② R 1 f −1 (u) du = R ∞ uf˙(u) du✱ 0 −∞ ✈❛❧✐❞ ❢♦r ❛♥ ❛r❜✐tr❛r② ♠♦♥♦t♦♥✐❝ ♦❢ ✈❛r✐❛❜❧❡ x = f −1 (u)✮✳ f ✱ limt→−∞ f (t) = 0✱ limt→∞ f (t) = 1 ✭✇❤✐❝❤ ✐s r❡❛❞✐❧② ♦❜t❛✐♥❡❞ ❜② t❤❡ ❝❤❛♥❣❡ ✶✵ ❤❡♥❝❡ ❢r♦♠ ✭✷✺✮ ✇❡ ♦❜t❛✐♥ ▲♦❣❈♦♥tr❛❝t❙t✐❝❦②❙tr✐❦❡❉❡❧t❛ ≡ dL 1 (F0 ) = − dF F0 Z ∞ 0 dσ̄(K) n(d2 (K, F0 )) dK, dK ❚❤✐s ❢♦r♠✉❧❛ ✇❛s ❛❧s♦ ♦❜t❛✐♥❡❞ ✐♥ ❬✶✵❪ ❛s ❛ t❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ ❉❡❧t❛s ♦❢ ❱❛♥✐❧❧❛ ♦♣t✐♦♥s ✐♥ t❤❡ r❡♣❧✐❝❛t✐♥❣ ♣♦rt❢♦❧✐♦ ♦❢ t❤❡ ▲♦❣ ❈♦♥tr❛❝t✳ ❲r✐t✐♥❣ t❤❡ ❛❜♦✈❡ ✐♥t❡❣r❛❧ ✐♥ t❡r♠s ♦❢ ❧♦❣✲s♣♦t ✈❛r✐❛❜❧❡ ✇❡ ❣❡t t❤❡ ❙t✐❝❦②✲❙tr✐❦❡ ❉❡❧t❛ R∞ 1 ❛s − F −∞ σ̇n(d2 ) dx✱ ✇❤❡r❡ ✇❡ r❡❝♦❣♥✐③❡ t❤❡ ✐♥t❡❣r❛♥❞ ❛s t❤❡ s❦❡✇✲❞❡♣❡♥❞❡♥t ♣❛rt ♦❢ t❤❡ ❈❉❋ ✭✶✷✮✳ ✭❝✮ ❚❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ ❞✐r❡❝t❧② ✈✐❛ ❞✐✛❡r❡♥t✐❛t✐♦♥ ✉♥❞❡r t❤❡ ✐♥t❡❣r❛❧ s✐❣♥✿ 1 d2 L (F0 ) = 2 2 dF F0 Z ∞ 0   dσ̄(K) 1 dK. n(d2 (K, F0 )) 1 − dK σ̄(K) ❍✐❣❤❡r ❞❡r✐✈❛t✐✈❡s ♦❢ ❛♥ ❛r❜✐tr❛r② ♦r❞❡r ❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ ❛♥❛❧♦❣♦✉s❧②✳ ▲♦❣ ❈♦♥tr❛❝t P❛r❛❧❧❡❧ ❙❤✐❢t ❱❡❣❛ ✶✳ ❚❤❡ ❱❡❣❛ ♦❢ t❤❡ ▲♦❣ ❈♦♥tr❛❝t ✐♥ t❤❡ ♣✉r❡ ❇❧❛❝❦✲❙❝❤♦❧❡s ♠♦❞❡❧ ✐s ♦❜✈✐♦✉s❧② ❧✐♥❡❛r ❢✉♥❝t✐♦♥ ♦❢ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t②✱ ✇❤✐❝❤ ❣❡♥❡r❛❧✐③❡s t♦ t❤❡ ❝❛s❡ ♦❢ ♣❛r❛❧❧❡❧ s❤✐❢t ♦❢ t❤❡ ✐♠♣❧✐❡❞ s✉r❢❛❝❡✿ ▲♦❣❈♦♥tr❛❝tP❛r❛❧❧❡❧❙❤✐❢t❱❡❣❛ = Z ∞ n(d2 (x)) dx. −∞ ❚❤❡ ❛❜♦✈❡ ❡①♣r❡ss✐♦♥ ❢♦❧❧♦✇s ❜② ❞✐✛❡r❡♥t✐❛t✐♥❣ ✉♥❞❡r t❤❡ ✐♥t❡❣r❛❧ s✐❣♥ t❤❡ st❛♥❞❛r❞ ❢♦r♠✉❧❛ ❢♦r t❤❡ r❡♣❧✐❝❛t✐♥❣ ♣♦rt❢♦❧✐♦ ♦❢ t❤❡ ▲♦❣ ❈♦♥tr❛❝t ✭❡✳❣✳ ❬✶✼❪✱ ❬✾❪✮✱ ❛♥❞ ✉s✐♥❣ t❤❡ ❢❛❝t t❤❛t t❤❡ ✐♥❞✐✈✐❞✉❛❧ ♦♣t✐♦♥ ❱❡❣❛ ✭✇rt t♦ t♦t❛❧ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t②✮ ❝❛♥ ❜❡ ✇r✐tt❡♥ ❛s Kn(d2 )✳ ■♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② ✜tt✐♥❣ ❛♥❞ ✐♥t❡r♣♦❧❛t✐♦♥ ✈✐❛ ❝♦♥str❛✐♥❡❞ ❇✲s♣❧✐♥❡s ✶✳ ❚❤❡ ♣r♦❝❡ss ♦❢ ♠❛r❦✐♥❣ ✭♦r ✏✜tt✐♥❣✬✮ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡s ✐♥ ♣r❛❝t✐❝❡ ❝♦♥s✐sts ♦❢ ✉s✐♥❣ ❛✈❛✐❧❛❜❧❡ ♠❛r❦❡t ✐♥❢♦r♠❛t✐♦♥ ✭❜✐❞ ❛♥❞ ❛s❦ q✉♦t❡s ♦❢ tr❛❞❡❞ ✐♥str✉♠❡♥ts✱ t②♣✐❝❛❧❧② ❱❛♥✐❧❧❛ ♦♣t✐♦♥s✱ 2 ✼ tr❛❞❡❞ ✈♦❧✉♠❡s✱ ❡t❝✳✮ t♦ ♣r♦❞✉❝❡ ❛ C ✲s♠♦♦t❤✱ ❛r❜✐tr❛❣❡✲❢r❡❡ ✏♠✐❞✑ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ✳ ❚❤✐s ♣r♦❝❡ss ❢❛❝❡s ♠✉❧t✐♣❧❡ ❝❤❛❧❧❡♥❣❡s✿ ✐t ❤❛s t♦ ❜❡ ♥✉♠❡r✐❝❛❧❧② st❛❜❧❡✱ ❢❛st✱ r❡s♣♦♥s✐✈❡ t♦ r❛♣✐❞❧② ❝❤❛♥❣✐♥❣ ♠❛r❦❡t ❝♦♥❞✐t✐♦♥s✱ ❛♥❞ ❛t t❤❡ s❛♠❡ t✐♠❡ r♦❜✉st ❛♥❞ ✐♠♠✉♥❡ t♦ ♦✉t❧✐❡rs ❛♥❞ s♣✉r✐♦✉s ✐♥♣✉ts ✭q✉♦t❡s✮✳ ❚❤✐s ✐s✱ t❤❡r❡❢♦r❡✱ ❛ r❛t❤❡r ❝♦♠♣❧❡① t❛s❦✱ ❛♥❞ t♦ ❣❡t s❛t✐s❢❛❝t♦r② r❡s✉❧ts r✐❣❤t t♦♦❧s ❤❛✈❡ t♦ ❜❡ ✉s❡❞ t♦✇❛r❞s ✐ts s♦❧✉t✐♦♥✳ ■♥ ✇❤❛t ❢♦❧❧♦✇s ✇❡ ✇✐❧❧ ❞❡✜♥❡ ♣r❡❝✐s❡❧② t❤❡ t❛s❦ ♦❢ ♠✐❞✲♣r✐❝❡ ✜tt✐♥❣✱ ❛♥❞ ✐♥tr♦❞✉❝❡ ❝♦♥✲ str❛✐♥❡❞ ❇✲s♣❧✐♥❡s ❛s ❛ ♠❡t❤♦❞ ❢♦r ♣r♦❞✉❝✐♥❣ ♠✐❞✲♣r✐❝❡s ❛♥❞✴♦r ❞❛t❛ ✜❧t❡r✐♥❣✳ ❖♥❝❡ t❤❡ ♠✐❞ ♣r✐❝❡s ❛r❡ ♣r♦❞✉❝❡❞✱ t❤❡ ♠✐❞ ✈♦❧❛t✐❧✐t❡s ❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ ✈✐❛ ✐♥✈❡rs✐♦♥✱ ♦r t❤❡ ✜tt❡❞ ♣r✐❝❡s ❝❛♥ ❜❡ ✉s❡❞ ❛s ❛ t❛r❣❡t ❢♦r ✜tt✐♥❣ ❛ ♣r❡❢❡rr❡❞ ♣❛r❛♠❡tr✐❝ ✈♦❧❛t✐❧✐t② ❢♦r♠✳ ✷✳ ●✐✈❡♥ t❤❡ ❞✐s❝r❡t❡ s❡t ♦❢ ❜✐❞ ❛♥❞ ❛s❦ q✉♦t❡s ❢♦r ❱❛♥✐❧❧❛ ❈❛❧❧ ♦♣t✐♦♥s✱ ✇❡ ❞❡✜♥❡ t❤❡ (2) ❛s ✜♥❞✐♥❣ ❛ C ♠❛♣♣✐♥❣ ❈❛❧❧(K) : [0, ∞) → (0, F ] s✉❝❤ t❤❛t✿ ✜tt✐♥❣ ♣r♦❝❡ss ♣r✐❝❡ ✭❛✮ ❋♦r ❡✈❡r② ❡①✐st✐♥❣ ❜✐❞ ❛♥❞ ❛s❦ ♣r✐❝❡✱ ❈❛❧❧(K) ✐s ❧♦✇❡r t❤❛♥ t❤❡ ❛s❦ ❛♥❞ ❤✐❣❤❡r t❤❛♥ t❤❡ ❜✐❞ ♣r✐❝❡ ❛t t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ str✐❦❡ ✭❜✮ ❚❤❡ s❧♦♣❡ ♦❢ ❈❛❧❧(K) ✇rt t♦ K K✳ ❜❡❧♦♥❣s t♦ [−1, 0]✳ ✼ ❲❡ ❛ss✉♠❡ t❤❡ s✐♥❣❧❡ ✭♠✐❞✮ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ✐s t♦ ❜❡ ♣r♦❞✉❝❡❞✱ ✇❤✐❝❤ ✐s st❛♥❞❛r❞ ♣r❛❝t✐❝❡ ❢♦r ✭❝♦♥s✐st❡♥t❧②✮ ♠❛r❦✐♥❣ ❱❛♥✐❧❧❛ ❛♥❞ ❊①♦t✐❝s ♣♦rt❢♦❧✐♦s❀ ♠❛r❦❡t✲♠❛❦❡rs ♠❛② ♦♣❡r❛t❡ ✉♥❞❡r s♦♠❡✇❤❛t ❞✐✛❡r❡♥t ❝♦♥str❛✐♥ts✳ ✶✶ ✭❝✮ ❚❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ♦❢ ❈❛❧❧(K) ✇rt t♦ K ✐s ♥♦♥✲♥❡❣❛t✐✈❡✳ ❚❤❡ ❛❜♦✈❡ ❝♦♥❞✐t✐♦♥s ❡♥s✉r❡ ❡①✐st❡♥❝❡ ♦❢ t❤❡ ❞❡♥s✐t② ❢✉♥❝t✐♦♥ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ❈❛❧❧(K)✳ ❲❡ ❞♦ ♥♦t ✐♥tr♦❞✉❝❡ ❛ r❛t❤❡r ❝♦♥tr✐✈❡❞ ❝♦♥❝❡♣t ♦❢ ♠✐❞ ♣r✐❝❡ ✭♦r ✈♦❧❛t✐❧✐t②✮ ❛♥❞ ✐♥❝♦r♣♦r❛t❡ ♦♥❧② t❤❡ ❣❡♥✉✐♥❡❧② ❛✈❛✐❧❛❜❧❡ ♠❛r❦❡t ✐♥❢♦r♠❛t✐♦♥✳ ✸✳ ❯s✐♥❣ t❤❡ r❡s✉❧ts ♦❢ ❬✶✸❪✱ ✇❡ ❝♦♥str✉❝t ❝♦♥str❛✐♥❡❞ ❇✲s♣❧✐♥❡ s♦❧✈✐♥❣ t❤❡ ❛❜♦✈❡ ✜tt✐♥❣ ♣r♦❜✲ ❧❡♠✳ ❲❡ st❛rt ✇✐t❤ t❤❡ ♠❛r❦❡t ❞❛t❛ s❡t ❢♦r ❛ ✜①❡❞ ❡①♣✐r②✿ {(sk , ak , bk , ωk ) : sk ∈ [0, Kmax ], 0 < bk < ak < ∞, ωk ≥ 0, 1 ≤ k ≤ N }, ✇❤❡r❡ bk ❛♥❞ ak ❛r❡ ❜✐❞ ❛♥❞ ❛s❦ ♣r✐❝❡s ❢♦r ❛ str✐❦❡ sk ✱ ❛♥❞ ωk ✐s ❛ ✇❡✐❣❤t r❡✢❡❝t✐♥❣ t❤❡ r❡❧❛t✐✈❡ ✐♠♣♦rt❛♥❝❡ ♦❢ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♦♣t✐♦♥ ✐♥ t❤❡ ✜tt✐♥❣ ♣r♦❝❡ss ✭❡✳❣✳ ❧✐q✉✐❞✐t② ♦r ❜✐❞✲❛s s♣r❡❛❞ r❡❧❛t❡❞✮✳ ❲❡ r❡♣r❡s❡♥t t❤❡ ♠✐❞ ♣r✐❝❡ ❛s ❛ t❤✐r❞✲❞❡❣r❡❡ ♣♦❧②♥♦♠✐❛❧ y(t) = 3 X k=0 τj−3+k Nk,3 (h(t − tk )), ✇✐t❤ ❡q✉❛❧❧② s♣❛❝❡❞ ❦♥♦t ♣♦✐♥ts Nj,3 ✱ 1 ≤ j ≤ 3✱ t ∈ [tj , tj+1 ], 0 ≤ j ≤ m − 1, 0 ≡ t0 < t1 < · · · < tm ≡ Kmax ✱ h := 1/(t2 − t1 )✱ ✇❤❡r❡ ❛r❡ t❤❡ ❜❛s✐s ❢✉♥❝t✐♦♥s ❢♦r t❤❡ ♥♦r♠❛❧✐③❡❞ t❤✐r❞✲♦r❞❡r ❇✲s♣❧✐♥❡s ✭s❡❡ m+3 ❬✶✸❪ ❛♥❞ t❤❡ r❡❢❡r❡♥❝❡s t❤❡r❡✐♥ ❢♦r ❛♥ ❛❝❝♦✉♥t ♦♥ ❇✲s♣❧✐♥❡s✮✳ ❚❤❡ ❝♦❡✣❝✐❡♥ts τ ∈ R ❞❡t❡r♠✐♥✐♥❣ y(t) ❛r❡ ♦❜t❛✐♥❡❞ ❛s ❛ s♦❧✉t✐♦♥ ♦❢ t❤❡ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠ min λ τ Z tm y (3) (u) du + t0 N X k=1 2 ωk y(sk ) − (ak + bk )/2 ✉♥❞❡r t❤❡ ❝♦♥str❛✐♥ts ✭❛✮ ✭❜✮ ✭❝✮ y(sk ) ∈ (bk , ak )✱ 1 ≤ k ≤ N y (1) (t) ∈ [−1, 0] y ✇❤❡r❡ r♦r✳ (2) (t) ≥ 0 λ ≥ 0 ❢♦r ❢♦r t ∈ [t0 , tm ] t ∈ [t0 , tm ]✱ ✐s ♣❛r❛♠❡t❡r ♣❡♥❛❧✐③✐♥❣ ♥♦♥✲s♠♦♦t❤♥❡ss ✽ ♦❢ y(t) r❡❧❛t✐✈❡ t♦ t❤❡ ✜tt✐♥❣ ❡r✲ ❚❤❡ ♠❛✐♥ r❡s✉❧t ♦❢ ❬✶✸❪ s❤♦✇s t❤❛t t❤❡ ❛❜♦✈❡ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠ ✐s ❛ st❛♥❞❛r❞ q✉❛❞r❛t✐❝ ♣r♦❣r❛♠♠✐♥❣ ✉♥❞❡r ❝♦♥str❛✐♥ts✱ ❢♦r ✇❤✐❝❤ ❡✣❝✐❡♥t ♥✉♠❡r✐❝❛❧ ♠❡t❤♦❞s ❡①✐sts ✐♥ ♠❛♥② ♣r♦❣r❛♠♠✐♥❣ ❧❛♥❣✉❛❣❡s ✭❡✳❣✳ ✏q✉❛❞♣r♦❣✑ ✐♥ ▼❆❚▲❆❇ ❛♥❞ ✏❈❱❳❖P❚✑ ✐♥ P②t❤♦♥✮✳ ❋✉rt❤❡r♠♦r❡✱ t❤❡ ♦♣t✐♠❛❧ s♦❧✉t✐♦♥ ✐s ✉♥✐q✉❡✱ ♣r♦✈✐❞❡❞ ♦♥❡ ❡①✐sts✳ ✹✳ ❘❡s✉❧ts ❢♦r t❤❡ t♦② ❡①❛♠♣❧❡ ✇❤❡r❡ t❤❡ ❜✐❞ ❛♥❞ ❛s❦s ❛r❡ ❣❡♥❡r❛t❡❞ ❛s ♥♦✐s② ❞❛t❛ ❛r♦✉♥❞ ✶❨✱ 40% ✈♦❧❛t✐❧✐t② ❝❛❧❧ ♣r✐❝❡s ✭s❤♦✇♥ ✐♥ ❜❧✉❡✮ ❛r❡ ❣✐✈❡♥ ✐♥ ❋✐❣✉r❡ ✹✳ ■♥ t❤✐s ❡①❛♠♣❧❡ t❤❡ ❦♥♦t ♣♦✐♥ts ❛r❡ t❛❦❡♥ t♦ ❜❡ ✐♥t❡❣❡rs✱ ✇❤✐❧❡ t❤❡ str✐❦❡s ❛r❡ ❝❤♦s❡♥ t♦ ❜❡ ❡q✉✐❞✐st❛♥t✱ ❜✉t ♥♦t ❝♦✐♥❝✐❞✐♥❣ ✇✐t❤ t❤❡ ❦♥♦t ♣♦✐♥ts✳ ❲❡ ♥♦t❡ s✉r♣r✐s✐♥❣❧② ❣♦♦❞ r❡❝♦✈❡r② ♦❢ t❤❡ ✐♥♣✉t ♣r✐❝❡ ❝✉r✈❡✳ ❋✐♥❛❧❧②✱ ✐♥ ♦r❞❡r t♦ ❛❝❤✐❡✈❡ ♦♣t✐♠❛❧ ♣❡r❢♦r♠❛♥❝❡ ✐♥ ♣r❛❝t✐❝❡ ✐t ✇♦✉❧❞ ❜❡ ❞❡s✐r❛❜❧❡ t♦ ❡①t❡♥❞ t❤❡ ❛❧❣♦r✐t❤♠ ♦❢ ❬✶✸❪ t♦ ❛❧❧♦✇ ❢♦r ♥♦♥✲✉♥✐❢♦r♠ s♣❛❝❡❞ ❦♥♦t ♣♦✐♥ts ✭t❤✐s ✐s ❛ s✉❜❥❡❝t ♦❢ ❝✉rr❡♥t ✇♦r❦✮✳ ✽ ❚❤❡ ♥♦♥✲s♠♦♦t❤♥❡ss ♣❡♥❛❧t② ❝❛♥ ❜❡ ♣❧❛❝❡❞ ♦♥ ❧♦✇❡r ❞❡r✐✈❛t✐✈❡s ❛s ✇❡❧❧✳ ✶✷ ❋✐❣✉r❡ ✹✿ ❈❛❧❧ ♣r✐❝❡ ✜tt✐♥❣ ✈✐❛ ❝♦♥tr♦❧✲t❤❡♦r❡t✐❝ ❇✲s♣❧✐♥❡s ❊①❛❝t ❱♦❧❛t✐❧✐t② ❙✇❛♣ ❘❡♣❧✐❝❛t✐♦♥ ✐♥ ❍❡st♦♥ t❤❡ ▼♦❞❡❧ ✶✳ ❈❛rr ❛♥❞ ▲❡❡ ✐♥ ❬✽❪ ♣r❡s❡♥t❡❞ ❛ r♦❜✉st ♠❡t❤♦❞♦❧♦❣② ❢♦r ♣r✐❝✐♥❣ ❛♥❞ ❤❡❞❣✐♥❣ ✈♦❧❛t✐❧✐t② ❞❡r✐✈❛t✐✈❡s ✐♥ t❤❡ ♠♦❞❡❧s ♦❢ t❤❡ ❢♦r♠ dSt = St (1) (2) (1) (1 − ρ2 )vt dWt √ (2)  + ρ vt dWt , S0 > 0, ✭✷✻✮ ✐s ❛ ❲✐❡♥❡r ♣r♦❝❡ss✱ ✇❤❡r❡ ✉♥❞❡r Q✱ ❛♥❞ t❤❡ ✈❛r✐❛♥❝❡ ♣r♦❝❡ss vt ✐s (2) Wt ✐s ❛ st❛♥❞❛r❞ ❲✐❡♥❡r ♣r♦❝❡ss✳ ❚❤❡✐r ❛♣♣r♦❛❝❤ ✇❛s ❜❛s❡❞ ♦♥ t❤❡ ✐❞❡❛ ♦❢ ✏❝♦rr❡❧❛t✐♦♥ ✐♠♠✉♥❡✑ ❛♣♣r♦①✐♠❛t❡ r❡♣❧✐❝❛t✐♥❣ ♣♦rt❢♦❧✐♦✱ ✇❤❡r❡ (Wt , Wt ) p ❛❞❛♣t❡❞ t♦ ❛ ✜❧tr❛t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ ✇❤✐❝❤ ✇✐t❤ t❤❡ st❛rt✐♥❣ ♣♦✐♥t ❜❡✐♥❣ t❤❡ r❡❧❛t✐♦♥s❤✐♣ √ 1 v= √ 2 π Z ∞ 0 ✾ 1 − e−vλ dλ, λ3/2 v > 0, ✭✷✼✮ ❡♥❛❜❧✐♥❣ ♦♥❡ t♦ r❡❧❛t❡ ✭❛❢t❡r t❤❡ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ ❋✉❜✐♥✐✬s t❤❡♦r❡♠✮ t❤❡ ▲❛♣❧❛❝❡ tr❛♥s❢♦r♠ ♦❢ t❤❡ ✈❛r✐❛♥❝❡ t♦ t❤❡ ♣r✐❝❡ ♦❢ t❤❡ ❱♦❧❛t✐❧✐t② ❙✇❛♣✳ ❚❤❡ s❡❝♦♥❞ ✉s❡❞ t❤❡ ❢♦r♠✉❧❛ h i h i √ e−λhXit Et eλhXiT = Et (ST /St )1/2± 1/4+2λ ✇❤❡r❡ t❤❡ ♥♦t❛t✐♦♥ ρ=0 ·|ρ=0 ρ=0 , λ ∈ C, 0 ≤ t ≤ T, ✭✷✽✮ ✐♥❞✐❝❛t❡s t❤❛t t❤❡ ❡①♣❡❝t❛t✐♦♥ ✐s t❛❦❡♥ ✉♥❞❡r t❤❡ ❛ss✉♠♣t✐♦♥ t❤❛t ✐♥ t❤❡ ❞②♥❛♠✐❝s ✭✷✻✮✳ ✾ ❚❤✐s ❢♦r♠✉❧❛ ✇❛s ✜rst ✉s❡❞ ✐♥ ❋✐♥❛♥❝❡ ✐♥ ❬✻❪✱ ✇❤❡r❡ t❤❡ ❛✉t❤♦rs ❝r❡❞✐t ▼✳ ❨♦r ✇✐t❤ ♣♦✐♥t✐♥❣ ✐t ♦✉t ✐♥ t❤❡ ❝♦♥t❡①t ♦❢ ♣r✐❝✐♥❣ ✈♦❧❛t✐❧✐t② ❞❡r✐✈❛t✐✈❡s✳ ❆♥❛❧♦❣♦✉s r❡❧❛t✐♦♥s❤✐♣ ❤♦❧❞s ❢♦r ❛♥② ❡①♣♦♥❡♥t ✐♥ (0, 1)✱ ❛♥❞ ❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ ❜② ✐♥t❡❣r❛t✐♦♥ ✭✐♥ p✮ ♦❢ t❤❡ ▲❛♣❧❛❝❡ tr❛♥s❢♦r♠ ✐❞❡♥t✐t② L[tα ] = Γ(α + 1)/pα+1 ✱ ℜp > 0✱ α ∈ (−1, 0)✳ ✶✸ ✷✳ ❈♦♥s✐❞❡r t❤❡ ❍❡st♦♥ ♠♦❞❡❧✱ ❢♦r ✇❤✐❝❤ vt ✐♥ ✭✷✻✮ ❢♦❧❧♦✇s √ (2) dvt = (a − bvt ) dt + η v t dWt , v0 > 0. ✭✷✾✮ h i Rt   a, η ✱ ❛♥❞ ♣✉t φ(p, t, v0 , b, ρ) := E epXt ✱ Xt := ln(St /S0 ) ✱ ψ(λ, t, v0 , b) := E e−λ 0 vu du ✱ p p± (λ) := 1/2 ± 1/4 − 2λ✳ ❚❤❡♥ ❢r♦♠ ✭✷✼✮ ✇❡ ❤❛✈❡ i h s  R Z ∞ 1 − E e−λ 0T vu du Z T 1 E dλ. ✭✸✵✮ vu du = √ 2 π 0 λ3/2 0 ❋✐① ❖♥ t❤❡ ♦t❤❡r ❤❛♥❞  E e ✇❤❡r❡ E′ pXt   =E e  2 p −p 2+ 2 R t 0 vu du  Z ·     R p2 t √ v du −p ′ (1) 2+ 2 0 u E p , =E e vu dWu 0 ✐s t❛❦❡♥ ✇rt ♠❡❛s✉r❡ Q′ ✱ t ❞❡✜♥❡❞ ✈✐❛ dQ′ dQ  R √  · (1) := E p 0 vu dWu ✶✵ t❤❡ ■tô ❡①♣♦♥❡♥t✐❛❧✮✳ ❚❤❡r❡❢♦r❡✱ ❜② t❤❡ ●✐rs❛♥♦✈ ♠❡❛s✉r❡ ❝❤❛♥❣❡ ✱ T ✭E st❛♥❞s ❢♦r φ(p, t, v0 , b, ρ) = ψ(p/2 − p2 /2, t, v0 , b − ρηp), s♦ ✭✸✵✮ ❝❛♥ ❜❡ ✇r✐tt❡♥ ❛s s Z  E T  1 vu du = √ 2 π Z 1 g± (x, v0 ) := √ 2 π Z 0 ∞ 0 = E [g± (ST /S0 , v0 )] , ✇❤❡r❡ ✸✳ ❲❡ ♥♦t❡ t❤❛t ❢♦r   ψ(λ,T,v0 ,b) p± (λ) ψ(λ,T,v0 ,b−ρηp± (λ)) E (ST /S0 ) dλ λ3/2 1− ρ=0 ∞ 1− 0 ψ(λ,T,v0 ,b) p± (λ) ln(x) ψ(λ,T,v0 ,b−ρηp± (λ)) e dλ. λ3/2 ✇❡ r❡❝♦✈❡r t❤❡ ✏❝♦rr❡❧❛t✐♦♥ s❡♥s✐t✐✈❡✑ ♠❡t❤♦❞♦❧♦❣② ♦❢ ❬✽❪✳ ❙✐♥❝❡ t❤❡ ❝❧♦s❡❞ ❢♦r♠ ❡①♣r❡ss✐♦♥ ❢♦r ψ ✶✶ ✭❡✳❣✳ ❬✷✾❪✱ ❬✷✻❪✮✱ ✇❡ ❤❛✈❡ ♦❜t❛✐♥❡❞ t❤❡ ❡①❛❝t ✐s ✇❡❧❧ ❦♥♦✇♥ s②♥t❤❡t✐❝ ✈♦❧❛t✐❧✐t② s✇❛♣ r❡♣r❡s❡♥t❛t✐♦♥ ❢♦r t❤❡ ❍❡st♦♥ ♠♦❞❡❧✳ ❖❜s❡r✈❡ t❤❛t✱ ✉♥❧✐❦❡ t❤❡ ❝♦rr❡❧❛t✐♦♥✲✐♠♠✉♥❡ ♠❡t❤♦❞♦❧♦❣② ♦❢ ❬✽❪✱ ✐♥ ❣❡♥❡r❛❧ t❤❡r❡ ✐s ❞❡♣❡♥❞❡♥❝❡ ♦❢ g± ♦♥ v0 ✕ ❞✉❡ t♦ t❤❡ ▼❛r❦♦✈✐❛♥ ♥❛t✉r❡ ♦❢ ✭✷✾✮✱ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ❱♦❧❛t✐❧✐t② ❙✇❛♣ ✭♦r ❛♥② ♦t❤❡r ❞❡r✐✈❛t✐✈❡ ♦❢ v✮ ❝❛♥ ❜❡ ❡①♣r❡ss❡❞ s♦❧❡❧② ✐♥ t❡r♠s ♦❢ v0 ❀ t❤❡ r❡♣r❡s❡♥t❛t✐♦♥ ✈✐❛ g± ❤❛s t❤❡ ❛❞✈❛♥t❛❣❡ ♦❢ ❛❧❧♦✇✐♥❣ ♦♥❡ t♦ ❤❡❞❣❡ ❛ ♣❛rt ♦❢ t❤❡ ❛ss♦❝✐❛t❡ ♠❛r❦❡t r✐s❦ ✇✐t❤ t❤❡ tr❛❞❡❛❜❧❡ ❛ss❡t S✳ P✐♥♥❡❞ ❞✐✛✉s✐♦♥s ❛♥❞ ✈♦❧❛t✐❧✐t② ✶✳ ❚❤❡ ❝♦♥❝❡♣t ♦❢ ❝♦♥❞✐t✐♦♥❡❞ ✭♦r ♣✐♥♥❡❞✮ ❞✐✛✉s✐♦♥✱ ❤❛✈✐♥❣ ✐ts ♦r✐❣✐♥s ✐♥ t❤❡ ✇♦r❦ ♦❢ ❙❝rö❞✐♥❣❡r✱ ✇❛s s②st❡♠❛t✐❝❛❧❧② ✐♥tr♦❞✉❝❡❞ ✐♥ st♦❝❤❛st✐❝ ❛♥❛❧②s✐s ✐♥ ❬✷✷❪✳ ●✐✈❡♥ ❛ ❝♦♥t✐♥✉♦✉s ▼❛r❦♦✈ ❞✐✛✉s✐♦♥ ♣r♦❝❡ss ✇✐t❤ tr❛♥s✐t✐♦♥ ❞❡♥s✐t② Nt := p(x, u; y, v)✱ p(Xt , t; y, T ) , p(X0 , 0; y, T ) 0 ≤ t < T, ✶✵ ❆ ✈❡rs✐♦♥ ♦❢ ●✐rs❛♥♦✈ ♠❡❛s✉r❡ ❝❤❛♥❣❡ ❛❧❧♦✇✐♥❣ p t♦ ❜❡ ❝♦♠♣❧❡① ✶✶ ❋♦r ❛ ❧✐♥❦ ✇✐t❤ t❤❡ ❝❧❛ss✐❝❛❧ ✇♦r❦ ♦❢ ❋❡❧❧❡r✱ s❡❡ ◆♦t❡s ✐♥ ❬✸✶❪✳ ✶✹ t❤❡ ♣r♦❝❡ss ✐s ❞✐s❝✉ss❡❞ ✐♥ ❬✼❪✳ ✭✸✶✮ ❞❡✜♥❡s ❛ ♥♦♥♥❡❣❛t✐✈❡ ♠❛rt✐♥❣❛❧❡✱ ❛♥❞✱ ✇✐t❤ dPy,T dP ❞❡✜♥❡s ❛ ♠❡❛s✉r❡ ♦♥ t < T }✱ ❢♦r ❡✈❡r② ❜❡✐♥❣ t❤❡ ♥❛t✉r❛❧ ✜❧tr❛t✐♦♥ ♦❢ Xt ✱ := Nt , Ft 0 ≤ t < T✳ ❚❤✐s ♠❡❛s✉r❡ ❝❛♥ ❜❡ ❡①t❡♥❞❡❞ t♦  σ Ft ; 0 ≤ y,T Xt ✱ ❡q✉❛❧s FT ✳ ❙✉❝❤ ❞❡✜♥❡❞ dPdP ❣✐✈❡s ❛ Xt t♦ K ❛t t = T ✳ ❯♥❞❡r Py,T t❤❡ ♣r♦❝❡ss Xt ✐s ❛ ▼❛r❦♦✈ ♣r♦❝❡ss✱ s♦✲ ✇❤✐❝❤✱ ❞✉❡ t♦ ❝♦♥t✐♥✉✐t② ♦❢ ♣❛t❤s ♦❢ ♠❡❛s✉r❡ ✇❤✐❝❤ ❵✬♣✐♥s✑ ❝❛❧❧❡❞ Ft Ft ❝♦♥❞✐t✐♦♥❡❞ ♦r ♣✐♥♥❡❞ ❞✐✛✉s✐♦♥✳ ❆ ♠♦r❡ ❞❡t❛✐❧❡❞ ❛❝❝♦✉♥t✱ ✇✐t❤ ❛♥ ❛♠♣❧❡ ❜❛❝❦❣r♦✉♥❞ ♦♥ ❝♦♥❞✐t✐♦♥❡❞ ❞✐✛✉s✐♦♥s ❝❛♥ ❜❡ ❢♦✉♥❞ ✐♥ t❤❡ ❞❡❞✐❝❛t❡❞ s✉♠♠❛r② s❡❝t✐♦♥ ♦❢ ❬✸✹❪✳ ❚♦ s❡❡ r❡❧❡✈❛♥❝❡ ♦❢ t❤✐s ♥♦t✐♦♥ ✐♥ st✉❞②✐♥❣ ✈♦❧❛t✐❧✐t②✱ ❝♦♥s✐❞❡r ❛ st♦❝❤❛st✐❝ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧ ✐♥ ✇❤✐❝❤ t❤❡ s♣♦t✲✈❛r✐❛♥❝❡ ♣❛✐r tr❛♥s✐t✐♦♥ ❞❡♥s✐t② p(t, z1 ; T, z2 )✳ zt ≡ (St , vt ) ✐s ❛ ❝♦♥t✐♥✉♦✉s ▼❛r❦♦✈ ❞✐✛✉s✐♦♥ ✇✐t❤ t❤❡ ■♥ t❤✐s ❝❛s❡✱ ❢♦r t❤❡ ❧♦❝❛❧ ✈♦❧❛t✐❧✐t② ❢✉♥❝t✐♦♥ ✇❡ ❝❛♥ ✇r✐t❡ σ 2 (K, T ) = E[vT |ST = K] = EK,T [vT ], ✇❤❡r❡ ❛♥❞ pT R p(zt , t; (K, v), T ) pT (dv) R , := R p(z 0 , 0; (K, v), T ) pT (dv) t R R pT (v) := R+ p(z0 , 0; s, v) ds✳ dPy,T dP ✐s t❤❡ ❞❡♥s✐t② ♦❢ vT ✱ Sn(d1 ) = Kn(d2 )✱ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t t❤❡ ✐♥ t❤❡ ❇❧❛❝❦✲❙❝❤♦❧❡s 2 $Γt := St2 ∂∂SC2 (St , K) ✐s ❛ ♠❛rt✐♥❣❛❧❡✳ ❚❤✐s ♣r♦♣❡rt②✱ ✐♥ ❢❛❝t ❤♦❧❞s✱ ✐♥ ❛ ❣r❡❛t❡r ❣❡♥❡r❛❧✐t②✿ ❛ss✉♠✐♥❣ t❤❛t t❤❡ ✉♥❞❡r❧②✐♥❣ ✭♠❛rt✐♥❣❛❧❡✮ ❛ss❡t ♣r✐❝❡ St ❤❛s ✶✷ ♦♥ S ✱ ❞✐✛❡r❡♥t✐❛t✐♥❣ ❢♦r ❡✈❡r② n ✐❞❡♥t✐t② t❤❡ ♣r♦♣❡rt② t❤❛t St /S0 ❞♦❡s ♥♦t ❞❡♣❡♥❞ 0 C(uS, uK) = uC(S, K)✱ 1, 2, . . . n t✐♠❡s✱ ❛♥❞ t❤❡♥ s❡tt✐♥❣ u = 1✱ ✇❡ ♦❜t❛✐♥✶✸ ✷✳ ❋♦r♠ ✭✸✶✮ ❛♥❞ t❤❡ ❢❛❝t t❤❛t ♠♦❞❡❧ ✏❈❛s❤ ●❛♠♠❛✑✱ ∂C ∂C +K = C, S ∂S ∂K ❋r♦♠ t❤❡ ✜rst ✐❞❡♥t✐t②✱ s✐♥❝❡ ❜♦t❤ n   X n k=0 k S k K n−k ∂nC = 0, n > 1. ∂S k K n−k ∂C ✇❡ ❝♦♥❝❧✉❞❡ ∂K (St , K) ❛r❡ ❛ ♠❛rt✐♥❣❛❧❡s✱  ∂C ∂2C ◆❡①t✱ s✐♥❝❡ (St , K + h) − ∂K 2 (St , K) = limh→0 ∂K   ∂C limh→0 St ∂C (S , K+h)−S (S , K) /h ✇❡ ❝♦♥❝❧✉❞❡ t t ∂S t ∂S C(St , K) ❛♥❞ (St , K) ✐s ❛ ♠❛rt✐♥❣❛❧❡✳ St ∂C ∂S  ∂C ∂2C (S , K) /h ❛♥❞ St ∂S∂K (St , K) = t ∂K ∂2C ∂2C t❤❛t ∂K 2 (St , K) ❛♥❞ St ∂S∂K (St , K)✱ ❛r✐s✐♥❣ ❛s ❛ ❧✐♠✐ts ♦❢ ❞✐✛❡r❡♥❝❡s ♦❢ t✇♦ ♠❛rt✐♥❣❛❧❡s✱ ❛r❡ 2 ∂2C ❛❧s♦ ♠❛rt✐♥❣❛❧❡s✳ ❋r♦♠ t❤❡ s❡❝♦♥❞ ✐❞❡♥t✐t② ✇✐t❤ n = 2 ✇❡ t❤❡♥ ❝♦♥❝❧✉❞❡ t❤❛t St ∂S 2 (St , K) n n∂ C ✐s ❛ ♠❛rt✐♥❣❛❧❡✳ Pr♦❝❡❡❞✐♥❣ ✐♥❞✉❝t✐✈❡❧②✱ ✇❡ ✜♥❞ t❤❛t St (S , K) ✐s ❛ ♠❛rt✐♥❣❛❧❡ ❢♦r ❡✈❡r② n t ∂S n ≥ 1✳ ❚❤✐s ❢❛❝t ✇❛s ❛❧s♦ ❛❞❞r❡ss❡❞ ✐♥ ❈❤❛♣t❡r ✺ ♦❢ ❬✹❪ ✉s✐♥❣ P❉❊ ♠❡t❤♦❞s✳ t❤❛t ✸✳ ❋♦r t❤❡ ❇❧❛❝❦✲❙❝❤♦❧❡s ♠♦❞❡❧✱ ❢♦r ❛ ❈❛❧❧ str✉❝❦ ❛t ✇✐t❤ d2 (S, K, t) ≡ ln(S/K)− 12 σ 2 t √ ✳ ❚❤❡r❡❢♦r❡✱ σ t d$Γt = −$Γt K ✱ ❡①♣✐r✐♥❣ ❛t T ✇❡ ❤❛✈❡ t ,K,T −t)) √ ✱ $Γt = K n(d2 (S σ T −t ln(St /K) − 21 σ 2 (T − t) d2 (St , K, T − t) √ dWt , dSt = −$Γt σ(T − t) St σ T − t ✶✷ ◆♦t❡ t❤❛t t❤✐s ❡①❝❧✉❞❡s t❤❡ ❧♦❝❛❧ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧✱ ❜✉t ❞♦❡s ✐♥❝❧✉❞❡ ❛❧❧ ❝❧❛ss✐❝❛❧ st♦❝❤❛st✐❝ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧s ✐♥ ✇❤✐❝❤ t❤❡ ✈❛r✐❛♥❝❡ ♣r♦❝❡ss ❞♦❡s ♥♦t ❞❡♣❡♥❞ ♦♥ St ✳ ✶✸ ❚❤❡ ❝❛s❡ n = 1 ✇❛s ❡st❛❜❧✐s❤❡❞ ✐♥ ❬✷✺❪ ❛♥❞ ❬✷✹❪ ✉s✐♥❣ ❞✐✛❡r❡♥t ❛r❣✉♠❡♥t✳ ✶✺ ✇❤✐❝❤ ✐♥ t✉r♥ ❣✐✈❡s  1 $Γt = $Γ0 exp − 2 ✇✐t❤ Z 0 ,K,T )) √ $Γ0 = K n(d2 (S ✱ σ T t 2 0 Φ (Su , K, u, T ) du − Z t Φ(Su , K, u, T ) dWu , t ≥ 0, 0  ❛♥❞ ln(S/K) − 12 σ 2 (T − t) d2 (S, K, T − t) √ ≡ σ(T − t) T −t Φ(S, K, t, T ) := ✹✳ ■♥ ❬✶✼❪ ✭s❡❡ ❛❧s♦ ❬✶✾❪✱ ❬✷✸❪✮ ●❛t❤❡r❛❧ ✐♥tr♦❞✉❝❡❞ t❤❡ ❝♦♥❝❡♣t ♦❢ ♠♦st ❧✐❦❡❧② ♣❛t❤ ♦❢ t❤❡ ❛ss❡t ♣r✐❝❡ ❛s ❢♦❧❧♦✇s✳ ❆ss✉♠❡ t❤❛t t❤❡ ❛ss❡t ♣r✐❝❡  St = S0 exp − ❢♦r s♦♠❡ ♣♦s✐t✐✈❡✱ ❛❞❛♣t❡❞ σt ✳ 1 2 Z St ✉♥❞❡r t❤❡ r✐s❦✲♥❡✉tr❛❧ ♠❡❛s✉r❡ ❢♦❧❧♦✇s t 0 σu2 du + Z t 0  σu dWu , t≥0 ❆❧s♦ ❢♦r s♦♠❡ s✉✣❝✐❡♥t❧② r❡❣✉❧❛r ❞❡t❡r♠✐♥✐st✐❝ vt ❝♦♥s✐❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ ❇❧❛❝❦✲❙❝❤♦❧❡s P❉❊ 1 ∂ 2 CBS ∂CBS = vt S 2 , ∂t 2 ∂S 2 CBS (S, T ) = (S − K)+ ❯s✐♥❣ ■tô✬ ❢♦r♠✉❧❛ ♦♥❡ ♦❜t❛✐♥s E[(ST − K)+ ] = E[CBS (St , t)] + ✇❤❡r❡ ✜♥❞ vt ΓBS 1 2 Z T t E[(σu2 − vu )Su2 ΓBS (Su , σ̄u,T )] du, ✐s t❤❡ ❇❧❛❝❦✲❙❝❤♦❧❡s ●❛♠♠❛✱ ❛♥❞ σt,T := s♦ t❤❛t E[(ST − K)+ )] = E[C(St , t)], ❉✐r❡❝t ✐♥s♣❡❝t✐♦♥ ❣✐✈❡s vt = ■❢ t❤❡ ✈♦❧❛t✐❧✐t② ♣r♦❝❡ss st q 1 T −t RT t vu du✱ 0 ≤ t ≤ T, ✭✸✷✮ ❛♥❞ ♦✉r ❣♦❛❧ ✐s t♦ 0 ≤ t ≤ T. E[σt2 St2 ΓBS (St , σ̄t,T )] E[St2 ΓBS (St , σ̄t,T )] ♦r✐❣✐♥❛t❡s ❢r♦♠ ❛ ❧♦❝❛❧ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧ ✭✸✸✮ σ(St , t)✱ ♦♥❡ ❝❛♥ ♥♦✇ ✇r✐t❡ t❤❡ ♦♣t✐♦♥ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② ❛s 1 σ✐♠♣ (K, T ) = T 2 ✇❤❡r❡ t❤❡ ♠❡❛s✉r❡ Gt Z T 0   EGt σ 2 (St , t) dt, ✭✸✹✮ ✐s ❣✐✈❡♥ ✈✐❛ ❘❛❞♦♠✲◆✐❦♦❞②♠ ❞❡r✐✈❛t✐✈❡ σ 2 S 2 ΓBS (St , σ̄t,T ) dGt = t 2t dQ E[St ΓBS (St , σ̄t,T )] ●❛t❤❡r❛❧ ❛r❣✉❡s t❤❛t t❤❡ ♠❡❛s✉r❡ Gt ❝♦♥✜♥❡s t❤❡ ❛ss❡t ♣❛t❤s t♦ t❤❡ ♥❛rr♦✇ r✐❞❣❡ ❝♦♥❡❝t✐♥❣ t❤❡ s♣♦t ✈❛❧✉❡ t♦ t❤❡ ♦♣t✐♦♥ str✐❦❡✱ ❤❡♥❝❡ t❤❡ t❡r♠ t❤❡ ❵✬♠♦st ❧✐❦❡❧② ♣❛t❤✑ t❤❛t ✉s✐♥❣ t❤❡ ✐❞❡♥t✐t② F n(d1 ) = Kn(d2 ) vt = ✶✹ ✳ ❲❡ ♥♦t✐❝❡ ✇❡ ♦❜t❛✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ✈❡rs✐♦♥ ♦❢ ✭✸✸✮✿ E[σt2 pv· (St , t; K, T )] , E[pv· (St , t; K, T )] ✶✹ ◆♦t❡ t❤❛t t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ v ✐s ❝✐r❝✉❧❛r✱ ❛s σ̄ t t,T ❞❡♣❡♥❞s ♦♥ vt ✕ t❤✐s ❤❛s ❜❡❡♥ ❛❞❞r❡ss❡❞ ✐♥ ❬✷✸❪✳ ✶✻ t❤❡r❡ pv· (S, a; K, b) st❛♥❞s ❢♦r t❤❡ tr❛♥s✐t✐♦♥ ❞❡♥s✐t② ❢r♦♠ a t♦ b ♦❢ t❤❡ ❧♦❣♥♦r♠❛❧ ♣r♦❝❡ss   Z t Z √ 1 t S̄t := S0 exp − vu du + vu dWu , 2 0 0 t ≥ 0. ❲❡ ♥♦✇ ✐♥tr♦❞✉❝❡ t❤❡ ❝♦♥❞✐t✐♦♥❡❞ ❞✐✛✉s✐♦♥ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ♣✐♥♥✐♥❣ S̄t t♦ K ❛t T ✈✐❛ t❤❡ ❢♦❧❧♦✇✐♥❣ ❘❛❞♦♥✲◆✐❦♦❞②♠ ❞❡r✐✈❛t✐✈❡ ✭❝✳❢✳ ❬✸✹❪✮✿ dQK,T dQ := t pv· (S̄t , t; K, T ) , pv· (S0 , 0; K, T ) ❋♦❝✉s✐♥❣ ♦❢ t❤❡ ♦♣t✐♦♥ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② s❡tt✐♥❣ ✭✸✹✮✱ ✇❡ ❝❛♥ ♥♦✇ ✇r✐t❡ σ✐♠♣ (K, T )T = Z = Z 2 ✇❤❡r❡ p(·) T 0 T 0 σ✐♠♣ (K, T ) ≡ 0 < t < T. q R 1 T T 0 vu du ✐♥ t❤❡ ❧♦❝❛❧ ✈♦❧❛t✐❧✐t② Z T R∞ 2 σ (s, t)p(S0 , 0; s, t)pv· (s, t; K, T ) ds E[σt2 pv· (St , t; K, T )] 0 R dt dt = ∞ E[pv· (St , t; K, T )] p(S0 , 0; s, t)pv· (St , t; K, T ) ds 0 0 h i 0 ,0;S̄t ,t) ET,K σ 2 (S̄t , t) pp(S v· (S0 ,0;S̄t ,t) i h dt, ✭✸✺✮ p(S0 ,0;S̄t ,t) T,K E pv (S0 ,0;S̄t ,t) · ✐s t❤❡ tr❛♥s✐t✐♦♥ ❞❡♥s✐t② ♦❢ St ✳ ■♥ ❬✸✺❪ ❵✬❘❡❣❤❛✐✬s ♣r♦①②✑ ✇❛s ✐♥tr♦❞✉❝❡❞ 2 σ✐♠♣ (K, T )T = Z T 0   ET,K σ 2 (S̄t , t) dt, ✇❤✐❝❤ ✇❛s ❢✉rt❤❡r ✐♥✈❡st✐❣❛t❡❞ ✐♥ ❬✷✶❪ ❛♥❞ ❬✶✾❪✳ ✭✸✻✮ ❈♦♠♣❛r✐♥❣ ✭✸✻✮ ✇✐t❤ ❤❡ ❡①❛❝t r❡♣r❡✲ s❡♥t❛t✐♦♥ ✭✸✺✮ ✇❡ s❡❡ t❤❛t t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ✐♥ t❤❡ ❘❡❣❤❛✐✬s ♣r♦①② st❡♠s ❢r♦♠ t❛❦✐♥❣ p(S0 ,0;S̄t ,t) ≈ 1✱ ♣♦✐♥t✐♥❣ ❛t t❤❡ ❤❡❛t❤ ❦❡r♥❡❧ ❡①♣❛♥s✐♦♥ ♦❢ t❤❛t r❛t✐♦ ❛s ❛ ♥❛t✉r❛❧ ✇❛② ♦❢ pv· (S0 ,0;S̄t ,t) ✐♠♣r♦✈✐♥❣ ❛❝❝✉r❛❝② ♦❢ t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥✳ ✺✳ ❊q✉❛t✐♦♥ ✭✸✷✮ ❝❛♥ ❜❡ ✇r✐tt❡♥ ❛s K2 E[(ST −K) )] = E[CBS (St , t)]+ 2 + Z T t E[(ST − K)+ )] = (St − K)+ + 0 ≤ t ≤ T, ✭✸✼✮ d2 (S, K, σ) := ln(S/K)/σ − 21 σ ✳ P✉tt✐♥❣ vu ≡ 0 ②✐❡❧❞s ✇❤❡r❡ √ E[(σu2 −vu ) n(d2 (Su , K, σ̄u,T T − t))] du, ❆ss✉♠❡ t❤❡ ❧♦❝❛❧ ✈♦❧❛t✐❧✐t② ♠♦❞❡❧✱ K2 2 Z σu ≡ σ(Su , u)✳ T σ 2 (K, u) pS (St , t; K, u) du, t 0 ≤ t ≤ T, pS (·) ✐s t❤❡ tr❛♥s✐t✐♦♥ ♣r♦❜❛❜✐❧✐t② ❞❡♥s✐t② ♦❢ S ✳ ■♥ ❬✸✸❪ t❤✐s r❡❧❛t✐♦♥s❤✐♣ ✇❛s ♦❜t❛✐♥❡❞ σu ✉s✐♥❣ ❚❛♥❛❦❛ ❢♦r♠✉❧❛ ✭t❤✐s ❝❛s❡ ❝❛♥ ❛❧s♦ ❜❡ r❡❝♦✈❡r❡❞ ❢r♦♠ ❜② s❡tt✐♥❣ σu ≡ 0✮✳ ✇❤❡r❡ ❢♦r t❤❡ ❝❛s❡ ♦❢ ❞❡t❡r♠✐♥✐st✐❝ ✭✸✼✮ ❱♦❧❛t✐❧✐t② ❙✇❛♣ ✉♥❞❡r s②♠♠❡tr✐❝ s❦❡✇ ✶✳ ❚❤❡ ❡①t❡♥❞❡❞ ❋✉❦❛s❛✇❛ ❢♦r♠✉❧❛ ✭s❡❡ ❬✸✷❪✮ ❣✐✈❡s   E epXT = Z R epu n(f2 (u))[pf˙1 (u) + (1 − p)f˙2 (u)] du, ✶✼ ℜp ∈ [0, 1]. ✭✸✽✮ ❆ss✉♠❡ ❣♦✐♥❣ ❢♦r✇❛r❞ ❛ s②♠♠❡tr✐❝ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ σ(x) = σ(−x), x ∈ R. ✭✸✾✮ ❚❤❡ ❈❛rr✲▲❡❡ ✐❞❡♥t✐t② ✭s❡❡ ❡✳❣✳ Pr♦♣♦s✐t✐♦♥ ✶ ✐♥ ❬✶✷❪✮ st❛t❡s h i h i E e−λ[X]T = E ep(λ)XT , P✉t ❣❡t h(u) ≡ u σ(u) ✳ ❋♦r λ ∈ [0, 1/8] t❛❦❡ p(λ) = 1/2 ± p(λ) = 1/2 − p 1/4 − 2λ, p 1/4 − 2λ✱ λ ∈ [0, ∞). s♦ ❢r♦♠ ✭✸✽✮ ❛♥❞ ✭✸✾✮ ✇❡ h i Z   √ p  E ep(λ)XT − 1 = eu(1/2− 1/4−2λ) ḣ(u) + 1/4 − 2λ σ̇(u) − f˙2 (u) n(f2 (u)) du ZR∞   √ p  eu(1/2− 1/4−2λ) ḣ(u) + 1/4 − 2λ σ̇(u) − f˙2 (u) n(f2 (u)) du = 0 Z ∞  √ p  eu(−1/2+ 1/4−2λ) ḣ(u) − 1/4 − 2λ σ̇(u) − f˙1 (u) n(f1 (u)) du + 0 Z ∞ h p =2 eu/2 ḣ(u)(cosh(u 1/4 − 2λ) − cosh(u/2)) 0 p p i + σ̇(u) 1/4 − 2λ sinh(u 1/4 − 2λ) − sinh(u/2)/2 n(f2 (u)) du. ✭✹✵✮ ❋♦r h E e λ ∈ [1/8, ∞) p(λ)XT ✇❡ ❤❛✈❡ Z i − 1 =2 ∞ 0 p(λ) = 1/2 − i p 2λ − 1/4✱ s♦ ✇❡ ♦❜t❛✐♥ h p eu/2 ḣ(u)(cos(u 2λ − 1/4) − cos(u/2)) + σ̇(u) p p i 2λ − 1/4 sin(u 2λ − 1/4) − sin(u/2)/2 n(f2 (u)) du. ✭✹✶✮ ✷✳ ❘❡❝❛❧❧✐♥❣ √ 1 v= √ 2 π Z ∞ 0 1 − e−vλ dλ, λ3/2 t❤❡ ❢❛✐r ✈❛❧✉❡ ♦❢ t❤❡ ❱♦❧❛t✐❧✐t② ❙✇❛♣ ❜❡❝♦♠❡s ❱♦❧❙✇❛♣ I1 = ✇✐t❤✶✺ ✶✺ ■s Z ∞ 0 eu/2 d du  u σ(u)  n(f2 (u))Kh (u) du, Kh (u) := Kh1 (u) + Kh2 (u)✱ ✐s r♦✉t✐♥❡ t♦ ✈❡r✐❢② t❤❛t ❛❧❧ ❢♦✉r ✐♥t❡❣r❛❧s ❝♦♥✈❡r❣❡✳ ✶✽ I2 = v > 0, ≡ I = I1 + I2 ✱ Z ∞ 0 eu/2 ✇❤❡r❡ dσ(u) n(f2 (u))Kσ (u) du, du (1) Kh (u) 1 := √ 2 π Z 1 (2) Kh (u) := √ 2 π Z 1/8 p cosh(u/2) − cosh(u 1/4 − 2λ) dλ, λ3/2 p cos(u/2) − cos(u 2λ − 1/4) dλ, λ3/2 0 ∞ 1/8 ❛♥❞ Kσ (u) := Kσ1 (u) + Kσ2 (u)✱ Kσ(1) (u) 1 := √ 2 π 1 Kσ(2) (u) := √ 2 π Z Z 1/8 p p 1/4 − 2λ sinh(u 1/4 − 2λ) dλ λ3/2 p p sin(u/2)/2 − 2λ − 1/4 sin(u 2λ − 1/4) dλ. λ3/2 0 ∞ 1/8 sinh(u/2)/2 − ❲❡ ♥♦t❡ (1) K̇h (u) = Kσ(1) (u), (2) K̇h (u) = −Kσ(2) (u). ✸✳ ❲❡ ❤❛✈❡ I2 = e u/2 I1 = eu/2 σ(u)n(f2 (u))Kσ (u) u n(f2 (u))Kh (u) σ(u) s♦ t❤❛t I= Z ∞ ∞ 0 + ∞ 0 Z + ∞ σ(u)eu/2 n(f2 (u)) 0 Z ∞ 0 u 2  Kσ (u) − Kσ (u)f2 (u)f˙2 (u) + K̇σ (u) du u  u u/2 e n(f2 (u)) Kh (u) − Kh (u)f2 (u)f˙2 (u) + K̇h (u) du, σ(u) 2 Z ∞ eu/2 n(f2 (u))f1 (u)Kσ(2) (u) du   Z ∞ u eu/2 n(f2 (u))f2 (u)f˙2 (u) σ(u)Kσ (u) + − Kh (u) du σ(u) 0 Z ∞ Z ∞ 2 u σ(u)eu/2 n(f2 (u))K̇σ (u) du Kh (u) du + eu/2 n(f2 (u)) + 2σ(u) 0 0 0 e u/2 n(f2 (u))f2 (u)Kσ(1) (u) du − 0 ✹✳ ■t √ ❤❛s ❜❡❡♥ ❝♦♥❥❡❝t✉r❡❞ t❤❛t ✉♥❞❡r t❤❡ s②♠♠❡tr✐① s❦❡✇✱ t❤❡ ❢❛✐r ✈❛❧✉❡ ♦❢ t❤❡ ✈♦❧❛t✐❧✐t② s✇❛♣ ✐s 2x∗ ✱ ✇❤❡r❡ x∗ > 0 ✐s t❤❡ ✉♥✐q✉❡ s♦❧✉t✐♦♥ ♦❢ t❤❡ ❡q✉❛t✐♦♥ f1 (x) = 0✱ t❤❛t ✐s x∗ 1 − σ(x∗ ) = 0. ∗ σ(x ) 2 ❲❡ ❞✐s♣r♦✈❡ t❤✐s ❜② ❝♦♥str✉❝t✐♥❣ ❛ ❝♦✉♥t❡r❡①❛♠♣❧❡✳ ▲❡t C(K) ❞❡♥♦t❡ t❤❡ ♣r✐❝❡ ♦❢ t❤❡ ❝❛❧❧ ♦♣t✐♦♥ ♦♥ ❛♥ ❛ss❡t ✇✐t❤ ❝♦♥st❛♥t t♦t❛❧ ✈♦❧❛t✐❧✐t② σ0 ✱ s♦ t❤❛t t❤❡ ❢❛✐r ✈❛❧✉❡ ♦❢ t❤❡ ✈♦❧❛t✐❧✐t② s✇❛♣ ♦♥ t❤❛t ❛ss❡t ✐s σ0 ✱ ❛♥❞ x∗ = σ02 /2✳ ❙t❛rt✐♥❣ ❢r♦♠ C(K) ✇❡ ❝♦♥str✉❝t ❛ ♥❡✇ t♦t❛❧ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② ❝✉r✈❡ σ(K)✱ K ≥ 0✱ ❛s ❢♦❧❧♦✇s✿ ❧❡t T ❜❡ t❤❡ t❛♥❣❡♥t t♦ t❤❡ ❝♦♥✈❡① ∗ 2 ♠❛♣♣✐♥❣ K 7→ C(K) ❛t t❤❡ ♣♦✐♥t K ∗ = F ex = F eσ0 /2 ✱ ❛♥❞ ❞❡✜♥❡ C0 (K) t♦ ❜❡ t❤❡ t❛♥❣❡♥t T ❢♦r K ∈ [F, K ∗ ]✱ ❛♥❞ C(K) ❢♦r K ∈ (K ∗ , ∞)✳ ❋♦r K ∈ [F, ∞) ❧❡t σ(K) ❜❡ t❤❡ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② ❝♦rr❡s♣♦♥❞✐♥❣ t♦ C0 (K)✱ ❛♥❞ ❢♦r K < F ❞❡✜♥❡ C(K) ✈✐❛ s②♠♠❡tr② ❛s ✶✾ t❤❡ ❇❧❛❝❦✲❙❝❤♦❧❡s ❝❛❧❧ ♣r✐❝❡ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ t❤❡ ✈♦❧❛t✐❧✐t② σ(F 2 /K)✳ ❚♦ s❤♦✇ t❤❛t C0 ✐s ❛ ✈❛❧✐❞ ❝❛❧❧ ♣r✐❝❡✱ ✇❡ s❤♦✇ t❤❛t P (x) := 1 − dC (K+) = N (f2 (x)) + σ̇(x+)n(d2 (x)), dK x ≡ ln(K/F ), P ✐s ♦♥ R\{0} ❜② ❝♦♥str✉❝t✐♦♥ ♥♦♥✲❞❡❝r❡❛s✐♥❣✱ limx→−∞ P (x) = 0✱ limx→∞ P (x) = 1✱ ✐t r❡♠❛✐♥s t♦ s❤♦✇ t❤❛t σ̇(0+) ≥ 0✳ ❇✉t K ∈ [F, K ∗ ) t❤❡ t❛♥❣❡♥t C0 (K) ✐s ❛❜♦✈❡ t❤❡ ❝❛❧❧ ♣r✐❝❡ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ∗ t❤❡ ❝♦♥st❛♥t t♦t❛❧ ✈♦❧❛t✐❧✐t② σ(F )✱ ✇❤❡♥❝❡ σ(K) > σ(F ) ❢♦r K ∈ [F, K )✳ ❚❤✐s ✐♠♣❧✐❡s σ̇(0+) ≥ 0 s♦ σ(K) ✐s ❛r❜✐tr❛❣❡ ❢r❡❡✱ ❛♥❞ s✐♥❝❡ ❜② ❝♦♥str✉❝t✐♦♥ ✐t ❛❣r❡❡s ✇✐t❤ σ0 ❢♦r K ≥ K ∗ ✱ ✐ts ❝♦rr❡s♣♦♥❞✐♥❣ ✭♠♦♥♦t♦♥✐❝✮ f1 (x) ❤❛s ③❡r♦ ❛t x∗ ✳ ❆❝❝♦r❞✐♥❣ t♦ t❤❡ ❝♦♥❥❡❝t✉r❡ √ 2x∗ ✱ t❤✐s ✇♦✉❧❞ ✐♠♣❧② t❤❛t t❤❡ ❢❛✐r ✈❛❧✉❡ ♦❢ t❤❡ ✈♦❧❛t✐❧✐t② s✇❛♣ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ σ(K) ✐s ❜✉t t❤✐s ✐s ✐♠♣♦ss✐❜❧❡ ❜② ❚❤❡♦r❡♠ ✽ ♦❢ ❬✶✷❪ ❞✉❡ t♦ t❤❡ str✐❝t ❞♦♠✐♥❛♥❝❡ C0 (K) < C(K) ❢♦r K ∈ [F, K ∗ )✳ ✐s ❛ ✈❛❧✐❞ ❝✉♠✉❧❛t✐✈❡ ❞❡♥s✐t② ❢✉♥❝t✐♦♥✳ ❙✐♥❝❡ r✐❣❤t✲❝♦♥t✐♥✉♦✉s✱ ✇✐t❤ ❘❡❢❡r❡♥❝❡s ❬✶❪ ❬✷❪ ❏✳ ❆♥❞r❡❛s❡♥✳ ✏ ❇❡❤✐♥❞ t❤❡ ♠✐rr♦r✑✳ ■♥✿ ❘■❙❑ ✭◆♦✈✳ ✷✵✵✶✮✱ ♣♣✳ ✶✵✾✕✶✶✵✳ ❍✲❏✳ ❇❛rt❡❧s✳ ✏ ❖♥ ♠❛rt✐♥❣❛❧❡ ❞✐✛✉s✐♦♥s ❞❡s❝r✐❜✐♥❣ t❤❡ ❵s♠✐❧❡✲❡✛❡❝t✬ ❢♦r ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t✐❡s✑✳ ■♥✿ ❆♣♣❧✐❡❞ ❙t♦❝❤❛st✐❝ ▼♦❞❡❧s ✐♥ ❇✉s✐♥❡ss ❛♥❞ ■♥❞✉str② ✶✻✳✶ ✭✷✵✵✵✮✱ ♣♣✳ ✶✕✾✳ ❬✸❪ ❬✹❪ ❍✳ ❇❛ss♦✉✳ Pr✐✈❛t❡ ❝♦♠♠✉♥✐❝❛t✐♦♥✳ ✷✵✶✽✳ ▲✳ ❇❡r❣♦♠✐✳ ❙t♦❝❤❛st✐❝ ❱♦❧❛t✐❧✐t② ▼♦❞❡❧✐♥❣✳ ❈❤❛♣♠❛♥ ❛♥❞ ❍❛❧❧✴❈❘❈ ❋✐♥❛♥❝✐❛❧ ▼❛t❤❡♠❛t✲ ✐❝s ❙❡r✐❡s✳ ❚❛②❧♦r ✫ ❋r❛♥❝✐s✱ ✷✵✶✻✳ ❬✺❪ ▼✳ ❇r❡♥♥❡r ❛♥❞ ▼✳ ●✳ ❙✉❜r❛❤♠❛♥②❛♠✳ ✏ ❆ s✐♠♣❧❡ ❢♦r♠✉❧❛ t♦ ❝♦♠♣✉t❡ t❤❡ ✐♠♣❧✐❡❞ st❛♥❞❛r❞ ❞❡✈✐❛t✐♦♥✑✳ ■♥✿ ❋✐♥❛♥❝✐❛❧ ❆♥❛❧②sts ❏♦✉r♥❛❧ ✹✹✳✺ ✭✶✾✽✽✮✱ ♣♣✳ ✽✵✕✽✸✳ ❬✻❪ ❬✼❪ ❖✳ ❇r♦❝❦❤❛✉s ❡t ❛❧✳ ❊q✉✐t② ❉❡r✐✈❛t✐✈❡s ❛♥❞ ▼❛r❦❡t ❘✐s❦ ▼♦❞❡❧s✳ ❘✐s❦ ❇♦♦❦s✱ ✷✵✵✵✳ P✳ ❈❛rr ❛♥❞ ❲✉ ▲✳ ✏ ❚✐♠❡✲❝❤❛♥❣❡❞ ▲é✈② ♣r♦❝❡ss❡s ❛♥❞ ♦♣t✐♦♥ ♣r✐❝✐♥❣✑✳ ■♥✿ ❏♦✉r♥❛❧ ♦❢ ❋✐♥❛♥❝✐❛❧ ❊❝♦♥♦♠✐❝s ✼✶✳✶ ✭✷✵✵✹✮✱ ♣♣✳ ✶✶✸ ✕✶✹✶✳ ❬✽❪ P✳ ❈❛rr ❛♥❞ ❘✳ ▲❡❡✳ ✏ ❘❡❛❧✐③❡❞ ❱♦❧❛t✐❧✐t② ❛♥❞ ❱❛r✐❛♥❝❡✿ ❖♣t✐♦♥s ✈✐❛ ❙✇❛♣s✑✳ ■♥✿ ❘■❙❑ ✷✵✳✺ ✭✷✵✵✼✮✱ ♣♣✳ ✶✸✸✕✶✸✺✳ ❬✾❪ P✳ ❈❛rr ❛♥❞ ❘✳ ▲❡❡✳ ✏ ❱♦❧❛t✐❧✐t② ❞❡r✐✈❛t✐✈❡s✑✳ ■♥✿ ❆♥♥✉❛❧ ❘❡✈✐❡✇ ♦❢ ❋✐♥❛♥❝✐❛❧ ❊❝♦♥♦♠✐❝s ✶✳✶ ✭✷✵✵✾✮✱ ♣♣✳ ✸✶✾✕✸✸✾✳ ❬✶✵❪ ❇✳ ❈♦✉❧♦♠❜❡✱ ❆✳ ▼❛r✐♥✐✱ ❛♥❞ ❆✳ ❨❡s❛②❛♥✳ ✏ ❆♥ ❛♥❛❧②t✐❝ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❉❡❧t❛ ♦❢ ✈❛r✐❛♥❝❡ s✇❛♣✑✳ ■♥✿ ❲✐❧♠♦tt ❏♦✉r♥❛❧ ✶✳✸ ✭✷✵✵✾✮✱ ♣♣✳ ✶✸✸✕✶✸✺✳ ❬✶✶❪ ❬✶✷❪ ❆✳ ❉❛s●✉♣t❛✳ ❆s②♠♣t♦t✐❝ ❚❤❡♦r② ♦❢ ❙t❛t✐st✐❝s ❛♥❞ Pr♦❜❛❜✐❧✐t②✳ ❙♣r✐♥❣❡r✱ ✷✵✵✽✳ P✳ ❋r✐③ ❛♥❞ ❏✳ ●❛t❤❡r❛❧✳ ✏ ❱❛❧✉❛t✐♦♥ ♦❢ ✈♦❧❛t✐❧✐t② ❞❡r✐✈❛t✐✈❡s ❛s ❛♥ ✐♥✈❡rs❡ ♣r♦❜❧❡♠✑✳ ■♥✿ ◗✉❛♥t✐t❛t✐✈❡ ❋✐♥❛♥❝❡ ✺✳✻ ✭✷✵✵✺✮✱ ♣♣✳ ✺✸✶✕✺✹✷✳ ❬✶✸❪ ❍✳ ❋✉❥✐♦❦❛ ❛♥❞ ❍✳ ❑❛♥♦✳ ✏ ❈♦♥tr♦❧ t❤❡♦r❡t✐❝ ❇✲s♣❧✐♥❡ s♠♦♦t❤✐♥❣ ✇✐t❤ ❝♦♥str❛✐♥ts ♦♥ ❞❡r✐✈❛✲ t✐✈❡s✑✳ ■♥✿ ✺✷♥❞ ■❊❊❊ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❉❡❝✐s✐♦♥ ❛♥❞ ❈♦♥tr♦❧ ✭✷✵✶✸✮✱ ♣♣✳ ✷✶✶✺✕✷✶✷✵✳ ❬✶✹❪ ▼✳ ❋✉❦❛s❛✇❛✳ ✏ ◆♦r♠❛❧✐③❛t✐♦♥ ❢♦r ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t②✑✳ Pr❡♣r✐♥t ♦♥ ❛r❳✐✈✿ ❤tt♣s✿✴✴❛r①✐✈✳♦r❣✴♣❞❢✴✶✵✵✽✳✺✵✺✺✳♣❞❢✳ ✷✵✶✵✳ ❬✶✺❪ ▼✳ ❋✉❦❛s❛✇❛✳ ✏ ❚❤❡ ♥♦r♠❛❧✐③✐♥❣ tr❛♥s❢♦r♠❛t✐♦♥ ♦❢ t❤❡ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② s♠✐❧❡✑✳ ■♥✿ ▼❛t❤❡✲ ♠❛t✐❝❛❧ ❋✐♥❛♥❝❡ ✷✷✳✹ ✭✷✵✶✷✮✱ ♣♣✳ ✼✺✸✕✼✻✷✳ ✷✵ ❬✶✻❪ ❏✳ ●❛t❤❡r❛❧✳ ✏ ❉❡❧t❛ ❤❡❞❣✐♥❣ ✇✐t❤ ✉♥❝❡rt❛✐♥ ✈♦❧❛t✐❧✐t②✑✳ ■♥✿ ❱♦❧❛t✐❧✐t② ✐♥ t❤❡ ❈❛♣✐t❛❧ ▼❛r✲ ❦❡ts✿ ❙t❛t❡✲♦❢✲t❤❡✲❆rt ❚❡❝❤♥✐q✉❡s ❢♦r ▼♦❞❡❧✐♥❣✱ ▼❛♥❛❣✐♥❣ ❛♥❞ ❚r❛❞✐♥❣ ❱♦❧❛t✐❧✐t②✳ ❊❞✳ ❜② ■✳ ◆❡❧❦❡♥✳ ●❧❡♥❧❛❦❡ P✉❜❧✐s❤✐♥❣✱ ❋✐t③r♦② ❉❡❛r❜♦r♥ P✉❜❧✐s❤❡rs✱ ✶✾✾✼✳ ❈❤❛♣✳ ✺✱ ♣♣✳ ✾✺✕✶✶✷✳ ❬✶✼❪ ❬✶✽❪ ❏✳ ●❛t❤❡r❛❧✳ ❱♦❧❛t✐❧✐t② ❙✉r❢❛❝❡✿ ❆ Pr❛❝t✐t✐♦♥❡r✬s ●✉✐❞❡✳ ❲✐❧❡②✱ ✷✵✵✻✳ ❏✳ ●❛t❤❡r❛❧ ❛♥❞ ❆✳ ❏❛❝q✉✐❡r✳ ✏ ❆r❜✐tr❛❣❡✲❢r❡❡ ❙❱■ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡s✑✳ ■♥✿ ◗✉❛♥t✐t❛t✐✈❡ ❋✐✲ ♥❛♥❝❡ ✶✹✳✶ ✭✷✵✶✹✮✱ ♣♣✳ ✺✾✕✼✶✳ ❬✶✾❪ ❏✳ ●❛t❤❡r❛❧ ❛♥❞ ❚✳✲❍✳ ❲❛♥❣✳ ✏ ❚❤❡ ❤❡❛t❤✲❦❡r♥❡❧ ♠♦st ❧✐❦❡❧② ♣❛t❤ ❛♣♣r♦①✐♠❛t✐♦♥✑✳ ■♥✿ ■♥✲ t❡r♥❛t✐♦♥❛❧ ❏♦✉r♥❛❧ ♦❢ ❚❤❡♦r❡t✐❝❛❧ ❛♥❞ ❆♣♣❧✐❡❞ ❋✐♥❛♥❝❡ ✶✺✳✵✶ ✭✷✵✶✷✮✳ ❬✷✵❪ ❏✳ ●❛t❤❡r❛❧r✳ ✏ ❚❤❡ ✈♦❧❛t✐❧✐t② s❦❡✇✿ ❆r❜✐tr❛❣❡ ❝♦♥str❛✐♥ts ❛♥❞ ❛s②♠♣t♦t✐❝ ❜❡❤❛✈✐♦✉r✑✳ ■♥✿ ▼❡rr✐❧❧ ▲②♥❝❤ ♣r❡s❡♥t❛t✐♦♥ ✭✶✾✾✾✮✳ ❬✷✶❪ ❏✳ ●✉②♦♥ ❛♥❞ P✳ ❍❡♥r②✲▲❛❜♦r❞❡r❡✳ ✏ ❋r♦♠ s♣♦t ✈♦❧❛t✐❧✐t✐❡s t♦ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧t✐❡s✑✳ ■♥✿ ❙❙❘◆ ✷✵✶✵ ✭✮✳ ❬✷✷❪ ✉r❧✿ ❤tt♣s✿✴✴ssr♥✳❝♦♠✴❛❜str❛❝t❂✶✻✻✸✽✼✽✳ ❇✳ ❏❛♠✐s♦♥✳ ✏ ❚❤❡ ▼❛r❦♦✈ ♣r♦❝❡ss❡s ♦❢ ❙❝❤rö❞✐♥❣❡r✑✳ ■♥✿ ❩❡✐ts❝❤r✐❢t ❢ür ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t✲ st❤❡♦r✐❡ ✉♥❞ ❱❡r✇❛♥❞t❡ ●❡❜✐❡t❡ ✸✷✳✹ ✭✶✾✼✺✮✱ ♣♣✳ ✸✷✸✕✸✸✶✳ ❬✷✸❪ ▼✳ ❑❡❧❧❡r✲❘❡ss❡❧ ❛♥❞ ❏✳ ❚❡✐❝❤♠❛♥♥✳ ✏ ❆ ❘❡♠❛r❦ ♦♥ ●❛t❤❡r❛❧✬s ❵▼♦st✲▲✐❦❡❧② P❛t❤ ❆♣♣r♦①✲ ✐♠❛t✐♦♥✬ ♦❢ ■♠♣❧✐❡❞ ❱♦❧❛t✐❧✐t②✑✳ ■♥✿ ▲❛r❣❡ ❉❡✈✐❛t✐♦♥s ❛♥❞ ❆s②♠♣t♦t✐❝ ▼❡t❤♦❞s ✐♥ ❋✐♥❛♥❝❡✳ ❊❞✳ ❜② P❡t❡r ❑✳ ❋r✐③ ❡t ❛❧✳ ❙♣r✐♥❣❡r✱ ✷✵✶✺✱ ♣♣✳ ✷✸✾✕✷✹✺✳ ❬✷✹❪ ❋✳ ❑❧❡❜❛♥❡r✳ ✏ ❈♦rr❡❝t✐♦♥ t♦✿ ❖♣t✐♦♥ ♣r✐❝❡ ✇❤❡♥ t❤❡ st♦❝❦ ✐s ❛ s❡♠✐♠❛rt✐♥❣❛❧❡✑✳ ■♥✿ ❊❧❡❝✲ tr♦♥✐❝ ❈♦♠♠✉♥✐❝❛t✐♦♥s ✐♥ Pr♦❜❛❜✐❧✐t② ✽ ✭✷✵✵✸✮✱ ♣♣✳ ❈✶✕✶✳ ❬✷✺❪ ❋✳ ❑❧❡❜❛♥❡r✳ ✏ ❖♣t✐♦♥ ♣r✐❝❡ ✇❤❡♥ t❤❡ st♦❝❦ ✐s ❛ s❡♠✐♠❛rt✐♥❣❛❧❡✑✳ ■♥✿ ❊❧❡❝tr♦♥✐❝ ❈♦♠♠✉♥✐✲ ❝❛t✐♦♥s ✐♥ Pr♦❜❛❜✐❧✐t② ✼ ✭✷✵✵✷✮✱ ♣♣✳ ✼✾✕✽✸✳ ❬✷✻❪ ❉✳ ▲❛♠❜❡rt♦♥ ❛♥❞ ❇✳ ▲❛♣❡②r❡✳ ■♥tr♦❞✉❝t✐♦♥ t♦ ❙t♦❝❤❛st✐❝ ❈❛❧❝✉❧✉s ❆♣♣❧✐❡❞ t♦ ❋✐♥❛♥❝❡✱ ❙❡❝♦♥❞ ❊❞✐t✐♦♥✳ ❈❤❛♣♠❛♥ ❛♥❞ ❍❛❧❧✴❈❘❈ ❋✐♥❛♥❝✐❛❧ ▼❛t❤❡♠❛t✐❝s ❙❡r✐❡s✳ ❚❛②❧♦r ✫ ❋r❛♥❝✐s✱ ✷✵✵✼✳ ❬✷✼❪ ❘✳ ▲❡❡✳ ✏ ■♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t②✿ ❙t❛t✐❝s✱ ❞②♥❛♠✐❝s✱ ❛♥❞ ♣r♦❜❛❜✐❧✐st✐❝ ✐♥t❡r♣r❡t❛t✐♦♥✑✳ ■♥✿ ❘❡❝❡♥t ❆❞✈❛♥❝❡s ✐♥ ❆♣♣❧✐❡❞ Pr♦❜❛❜✐❧✐t②✳ ❙♣r✐♥❣❡r✱ ✷✵✵✺✳ ❬✷✽❪ ❘✳ ▲❡❡✳ ✏ ❚❤❡ ♠♦♠❡♥t ❢♦r♠✉❧❛ ❢♦r ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t✐❡s ❛t ❡①tr❡❡♠❡ str✐❦❡s✑✳ ■♥✿ ▼❛t❤❡♠❛t✐❝❛❧ ❋✐♥❛♥❝❡ ✶✹✳✸ ✭✷✵✵✹✮✱ ♣♣✳ ✹✻✾✕✹✽✵✳ ❬✷✾❪ ❆✳ ▲✐♣t♦♥✳ ▼❛t❤❡♠❛t✐❝❛❧ ▼❡t❤♦❞s ❢♦r ❋♦r❡✐❣♥ ❊①❝❤❛♥❣❡✿ ❆ ❋✐♥❛♥❝✐❛❧ ❊♥❣✐♥❡❡r✬s ❆♣♣r♦❛❝❤✳ ❲♦r❧❞ ❙❝✐❡♥t✐✜❝✱ ✷✵✵✶✳ ❬✸✵❪ ❉✳ ▲✉✱ ▲✳ ❙♦♥❣✱ ❛♥❞ ●✳ ❚❛♥❣✳ ✏ ❙♦♠❡ ♥❡✇ ❛♣♣r♦①✐♠❛t✐♦♥s ❛♥❞ ♣r♦♦❢s ❢♦r ▼✐❧❧s✬ r❛t✐♦✑✳ ■♥✿ ❘❡s✉❧ts ✐♥ ▼❛t❤❡♠❛t✐❝s ✼✸✳✶ ✭✷✵✶✽✮✱ ♣✳ ✷✼✳ ❬✸✶❪ ❱✳ ▲✉❝✐❝✳ ✏ ❇♦✉♥❞❛r② ❝♦♥❞✐t✐♦♥s ❢♦r ❝♦♠♣✉t✐♥❣ ❞❡♥s✐t✐❡s ✐♥ ❤②❜r✐❞ ♠♦❞❡❧s ✈✐❛ P❉❊ ♠❡t❤✲ ♦❞s✑✳ ■♥✿ ❙t♦❝❤❛st✐❝s ✽✹✳✺✲✻ ✭✷✵✶✷✮✱ ♣♣✳ ✼✵✺✕✼✶✽✳ ❬✸✷❪ ❙✳ ❉❡ ▼❛r❝♦ ❛♥❞ ❈✳ ▼❛rt✐♥✐✳ ✏ ▼♦♠❡♥t ❣❡♥❡r❛t✐♥❣ ❢✉♥❝t✐♦♥s ❛♥❞ ♥♦r♠❛❧✐③❡❞ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✲ ✐t✐❡s✿ ✉♥✐✜❝❛t✐♦♥ ❛♥❞ ❡①t❡♥s✐♦♥ ✈✐❛ ❋✉❦❛s❛✇❛✬s ♣r✐❝✐♥❣ ❢♦r♠✉❧❛✑✳ ■♥✿ ◗✉❛♥t✐t❛t✐✈❡ ❋✐♥❛♥❝❡ ✶✽✳✹ ✭✷✵✶✼✮✱ ♣♣✳ ✻✵✾✕✻✷✷✳ ❬✸✸❪ ❬✸✹❪ ❆✳ P❛s❝✉❝❝✐✳ P❉❊ ❛♥❞ ▼❛rt✐♥❣❛❧❡ ▼❡t❤♦❞s ✐♥ ❖♣t✐♦♥ Pr✐❝✐♥❣✳ ❙♣r✐♥❣❡r ❱❡r❧❛❣✱ ✷✵✶✶✳ ❩✳ ◗✐❛♥ ❛♥❞ ❲✳ ❩❤❡♥❣✳ ✏ ❆ r❡♣r❡s❡♥t❛t✐♦♥ ❢♦r♠✉❧❛ ❢♦r tr❛♥s✐t✐♦♥ ♣r♦❜❛❜✐❧✐t② ❞❡♥s✐t✐❡s ♦❢ ❞✐✛✉s✐♦♥s ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥s✑✳ ■♥✿ ❙t♦❝❤❛st✐❝ Pr♦❝❡ss❡s ❛♥❞ t❤❡✐r ❆♣♣❧✐❝❛t✐♦♥s ✶✶✶✳✶ ✭✷✵✵✹✮✱ ♣♣✳ ✺✼ ✕✼✻✳ ❬✸✺❪ ❆✳ ❘❡❣❤❛✐✳ ✏ ❚❤❡ ❤②❜r✐❞ ♠♦st ❧✐❦❡❧② ♣❛t❤✑✳ ■♥✿ ❘■❙❑ ✭❆♣r✳ ✷✵✵✻✮✱ ♣♣✳ ✸✹✕✸✺✳ ✷✶ ❬✸✻❪ ▲✳ ❈✳ ●✳ ❘♦❣❡rs ❛♥❞ ▼✳ ❘✳ ❚❡❤r❛♥❝❤✐✳ ✏ ❈❛♥ t❤❡ ✐♠♣❧✐❡❞ ✈♦❧❛t✐❧✐t② s✉r❢❛❝❡ ♠♦✈❡ ❜② ♣❛r❛❧❧❡❧ s❤✐❢ts❄✑ ■♥✿ ❬✸✼❪ ❋✐♥❛♥❝❡ ❛♥❞ ❙t♦❝❤❛st✐❝s ✶✹✳✷ ✭✷✵✶✵✮✱ ♣♣✳ ✷✸✺✕✷✹✽✳ ▲✳ ❘✳ ❙❤❡♥t♦♥✳ ✏ ■♥❡q✉❛❧✐t✐❡s ❢♦r t❤❡ ◆♦r♠❛❧ ✐♥t❡❣r❛❧ ✐♥❝❧✉❞✐♥❣ ❛ ♥❡✇ ❝♦♥t✐♥✉❡❞ ❢r❛❝t✐♦♥✑✳ ■♥✿ ❇✐♦♠❡tr✐❦❛ ✹✶✳✶✴✷ ✭✶✾✺✹✮✱ ♣♣✳ ✶✼✼✕✶✽✾✳ ✷✷