Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

AIJRSTEM19-

American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629 AIJRSTEM is a refereed, indexed, peer-reviewed, multidisciplinary and open access journal published by I. Innovation and Research (IASIR), USA International Association of Scientific (An Association Unifying the Sciences, Engineering, and Applied Research) Ultrasonic Studies on Interionic Interactions of KSCN in 2-Ethoxyethanol + Water Mixture at Varying Temperatures M1. Surekha, H. R2. Shivakumar Department of Chemistry, KVG College of Engineering (Affiliated to Visvesvaraya Technological University), Sullia, Karnataka State, INDIA Abstract: Density (d), ultrasonic velocity (U) and viscosity (η) of potassium thiocyanate (KSCN) at different mole fractions of 2-ethoxyethanol has been measured at 288.15, 298.15, 308.15 and 318.15K. An ultrasonic interferometer working at 2 MHz was used to measure the sound velocity. Using the experimental data, adiabatic compressibility (βad), inter molecular free length (Lf), acoustic impedance (Z), Relative association (RA), apparent molar compressibility (ɸk), apparent molar volume (ɸv), limiting apparent molar compressibility (ɸ0k), limiting apparent molar volume (ɸ0v), association constant (Sk and Sv) and solvation number were computed. The observed variation of these parameters with respect to electrolyte concentration and temperature signifies the presence of ion- solvent and solvent-solvent interactions. Masson’s and Gucker’s equation has been verified. The maxima in ultrasonic velocity and minima in adiabatic compressibility are observed at X 2EE= 0.0136 elucidating complex formation in this composition. The positive Sk values suggests structure breaking property of KSCN. Keywords: Potassium thiocyanate, 2-ethoxyethanol, ultrasonic velocity, free length and solvation number. I. Introduction Electrolytes plays an important role in biological sciences, engineering, Geographic’s etc. [1-3]. Knowledge of the thermo acoustic properties of the electrolytes and solvents is of high interest in view of their wide applications in science and industrial process. During the last two decades, the ultrasonic velocities, density and viscosities of the solutions of mixed solvents have been extremely investigated by many workers [4-7]. The acoustic parameters are utilized in chacterizing of the structure and properties of solutions. These information are proven to be very useful in obtaining the knowledge regarding various inter ionic interactions [8]. Potassium thiocyanate (KSCN) is also known as sulphocyanide or rhodamide and is soluble in water and alcohol. Since it finds a number of industrial and biological applications [9, 10] its interactions in presence of different solvent mixtures is very importantShivakumar et al [11] reported an account of the investigation on solvation behavior of potassium thiocyanate in DMSO, DMF and their aqueous solutions at 288 – 313K temperatures. He has used ultrasonic parameters to explore ion- solvent and solvent – solvent interaction at varying conditions. More subtle effect arises with highly structured solvents like water due to strong solvation reducing the effective quantity of free solvent molecules. A good example of these effects is the hydrophobic interaction or bonding that is often evoked in aqueous biological systems. Mixed aqueous-organic or totally organic reaction media have been utilized by organic chemist to synthesize many valuable drugs and other compounds by reaction paths that involves ionic intermediate or products. 2-ethoxyehanol (1-ethoxy-2-hydroxyl; ethane) is used as a co-solvent since the substituted alcohols play very important role in solvation process. It belongs to alkoxy ethanol groups, which are the perfect solvents of many substances. 2-ethoxyethanol is widely used as an ingredient in cleaning agent/disinfectants/cosmetics [12]. In literature the information available regarding the acoustic behaviourof KSCNin 2-ethoxy ethanol + water mixtures are very scanty. In this investigation we attempted to reveal the interionic interactions taking place in the system involving KSCN in 2-ethoxyethanol+water at 288.15, 298.15, 308.15 and 318.15K. II. Experimental 2-ethoxyethanol (analytical grade, Merck) was used without further purification. Doubly distilled water was used for preparing various molefractions (ranging from 0.0000 to 1.0000) of 2-ethoxyethanol.The recrystallized electrolyte potassium thiocyanate (Merck - AR) was dried at 100-120°C in vacuum for 24 hour prior to use. Potassium thiocyanate (KSCN) is weighed in electrical digital balance (ER-180,Afcoset Balances, Bombay) with a precision of ±0.3% and dissolved in solvent mixture to prepare the desired concentration. A digital multi frequency ultrasonic interferometer (M-81S, Mittal New Delhi) at 2 MHz, with a measuring frequency tolerance at 0.03% has been used for velocity measurement. A thermostat (Kumar Make, Bombay) with an accuracy of AIJRSTEM 19-234; © 2019, AIJRSTEM All Rights Reserved Page 179 Surekha et al., American International Journal of Research in Science, Technology, Engineering & Mathematics,26(1), March-May 2019, pp. 179-187 ±0.01°C was used to maintain the temperature of the cell at 288.15, 298.15, 308.15 and 318.15K. A pyknometer (10 cc capacity) is used to determine the density of all the solutions. III. Results and Discussions Thermodynamic properties such asadiabatic compressibility (βad), inter molecular free length (Lf), acoustic impedance (Z), Relative association (RA), apparent molar compressibility (ɸk), apparent molar volume (ɸv), limiting apparent molar compressibility (ɸ0k), limiting apparent molar volume (ɸ0v) and solvation number (Sn) have been calculated for potassium thiocyanate in aqueous and mixed solvent mixture at different temperatures.The following equations were used for the calculations [13] U =λxF …….. (1) βad = 1/U2d ……..(2) Lf = K√ βad …….. (3) Z =Uxd …….. (4) RA = (d/d0) (U0/U)1/3 ……..(5) Φk = 1000(d0 βad - dl β0ad)/dld0 + M βad / dl …….. (6) Φv = M/d0 – 1000(d-d0)/Cd0 …….. (7) …….. (8) Sn = (n1/n2)(1- βad / β0ad) where dl, d0 and U, U0 are the densities and ultrasonic velocities of solution and solvent respectively. λ is the wavelength and F is the frequency of ultrasonic wave. M is the molecular weight of the solute, β0ad and βad are the adiabatic compressibilities of solvent and solution, K is the Jacobson constant, n 1 and n2 are the number of moles of the solvent and solute respectively. Ultrasonic velocity (U): The computed values of ultrasonic velocity (U) for Potassium thiocyanate in different 2-ethoxyethanol + water mixtures at 288.15, 298.15, 308.15 and 318.15 K presented in Table 1. It is observed that the variation of ultrasonic velocity with respect to concentration of KSCN depends on mole fraction of 2-ethoxyethanol. The increase in ultrasonic velocity with increase in concentration of the solute in the solution implies greater association of the molecules [14]. It is observed that the ultrasonic velocity increases initially with addition of co-solvent and found maximum at X2EE = 0.0136 and later decreased at co-solvent rich region. This may be due to enhancement of water structure by the added co-solvent increasing the effective ionic size [15]. The maxima at X2EE= 0.0136 have been attributed to the formation of hydrophobic aggregation resulting in labile clusters [16].Beyond this mole fraction sound velocity decreases indicating the weak solvent- solvent interaction. Lowering of ultrasonic velocity may be due to decrease in the dielectric constant of solvent mixture. A gradual increase in the velocity with rise in temperature was observed up to X2EE= 0.0052 as rise in the thermal energy weakens the ion-solvent interactions. However beyond this mole fraction reverse trend was observed. Adiabatic Compressibility (βad) and density: The change in the structural arrangement of molecules in a mixture is given by adiabatic compressibility. The variation of βadwith concentration of KSCN in 2-ethoxyethanol and water mixture is presented in Table 1. The adiabatic compressibility is found to decrease with increase in concentration of KSCN in different compositions of 2-ethoxyethanol + water mixtures. This may be attributed to increasing electrostrictive compression of water around the molecules[17]Minima in βad and maxima in ultrasound velocity was found at X2EE= 0.0136, indicating strong solvent-solvent interaction. Density values for different concentrations of potassium thiocyanate in 2ethoxyethanol + water mixtures at 288.15, 298.15, 308.15 and 318.15 K are presented in Table 2. Increase in density with increase in concentration of the solute is suggests the presence of solute-solvent attraction through hydrogen bonding and ion-solvent interactions in the solutions [18]. On the other hand, increasing tendency of density may be interpreted as structure making tendency of the solvent due to the added solute. Decrease in density with increase in temperature indicate decline in cohesive forces. Maxima in density was observed at X2EE= 0.0052. Further addition of co-solvent results in rise in overall volume and therefore gradual decrease in density is observed. Inter molecular free length (Lf): Nature of the molecular interaction are studied by intermolecular free length [19] and is calculated using the equation 3.Inter molecular free length for KSCN in 2- ethoxyethanol +water mixtures 288.15, 298.15, 308.15 and 318.15 K is calculated using the adiabatic compressibility data and presented in the Table 1. Inter molecular free length decreases linearly with increase in concentration of KSCN in different mole fractions of 2-ethoxyethanol. This may be due to decrease in compressibility with increase in concentration of the solute, which in turn indicates significant interaction between solute-solvent and solvent-solvent [20].Lowest Lf values was found at X2EE= 0.0136. This proves that the frame structure of solvent mixture remains stable, not affected by the added solute. As expected rise in temperature increases intermolecular distance between the surfaces of two molecules [21] weakeningthe ion-solvent and solvent-solvent interactions. AIJRSTEM 19-234; © 2019, AIJRSTEM All Rights Reserved Page 180 Surekha et al., American International Journal of Research in Science, Technology, Engineering & Mathematics,26(1), March-May 2019, pp. 179-187 Specific acoustic impedance (Z): Specific acoustic impedance [22]is the product of ultrasonic velocity (U) and density (d) and is calculated using the equation 4. The Z values computed for KSCN in 2-ethoxyethanol +water mixtures at different compositions are reported in Table 2. A gradual increase in Z value with concentration of KSCN is observed which can be attributed to the effective solute- solvent interactions [23]. It increases the intermolecular distance between the molecules which in turn enhances the impedance in the ultrasonic propagation [24] and becomes maximum at X2EE= 0.0136 suggesting highest solvent-solvent interaction at that mole fraction. Increase in temperature effectively changes structure of the molecules causing decrease in impedance values in co-solvent rich region but opposite trend is seen in water rich region i.e., at x2pr =0.0000 and 0.0023. Relative Association (RA): Relative association values for potassium thiocyanate in different compositions of 2-ethoxyethanol + water mixtures are computed using the equation 5 and are shown in Table 2. The increasing trend of RA value with solute concentration shows the ion-solvent interaction [22]. There is no much effect of temperature on RAvalues of KSCN in water and 2- ethoxyethanol + water system studied. Table 1. Experimentally determined ultrasonic velocity (U: ms-1), adiabatic compressibility (βad: m2/N) and intermolecular free length (Lf: m) for KSCN in 2 - ethoxyethanol + water mixtures with respect to concentration (C: Mol dm-3) at different temperatures TEMPERATURE C 288.15K 298.15K 308.15K 318.15K U 1010βad 1010Lf U 1010βad 1010 Lf U 1010βad 1010 Lf U 1010βad 1010 Lf X2EE=0.0000 0.01 1476 4.584 0.406 1500 4.450 0.415 1520 4.339 0.419 1538 4.261 0.428 0.02 1482 4.526 0.404 1506 4.394 0.412 1522 4.308 0.417 1540 4.239 0.426 0.03 1484 4.487 0.402 1504 4.384 0.412 1520 4.300 0.417 1540 4.218 0.425 0.04 1486 4.459 0.401 1510 4.327 0.409 1526 4.245 0.414 1544 4.176 0.423 0.05 1486 4.437 0.400 1516 4.272 0.407 1528 4.216 0.413 1544 4.154 0.422 0.06 1488 4.403 0.398 1524 4.214 0.404 1534 4.163 0.410 1546 4.120 0.420 0.07 1496 4.336 0.395 1524 4.212 0.404 1536 4.137 0.409 1548 4.100 0.419 0.08 1502 4.282 0.393 1532 4.133 0.400 1540 4.097 0.407 1550 4.067 0.418 0.09 1504 4.253 0.391 1544 4.051 0.396 1544 4.058 0.405 1552 4.039 0.416 0.1 1508 4.212 0.389 1536 4.076 0.397 1548 4.023 0.403 1558 3.999 0.414 X2EE = 0.0023 0.01 1528 4.270 0.392 1544 4.190 0.403 1560 4.120 0.408 1580 4.040 0.416 0.02 1532 4.220 0.390 1550 4.140 0.400 1564 4.080 0.406 1582 4.010 0.415 0.03 1534 4.200 0.389 1550 4.120 0.399 1566 4.050 0.405 1584 3.980 0.413 0.04 1536 4.170 0.387 1554 4.080 0.397 1568 4.020 0.403 1584 3.960 0.412 0.05 1540 4.130 0.386 1558 4.060 0.396 1574 3.970 0.401 1590 3.910 0.410 0.06 1544 4.080 0.383 1562 4.010 0.394 1578 3.930 0.399 1590 3.890 0.409 0.07 1552 4.020 0.380 1566 3.970 0.392 1584 3.890 0.397 1592 3.870 0.407 0.08 1560 3.960 0.378 1568 3.940 0.390 1588 3.850 0.395 1600 3.810 0.404 0.09 1560 3.540 0.377 1576 3.880 0.387 1590 3.830 0.394 1600 3.800 0.404 0.1 1568 3.890 0.374 1580 3.850 0.386 1590 3.100 0.354 1608 3.750 0.401 X2EE = 0.0052 0.01 1602 3.897 0.375 1608 3.867 0.387 1612 3.848 0.395 1620 3.810 0.404 0.02 1602 3.897 0.375 1610 3.858 0.386 1614 3.839 0.394 1620 3.810 0.404 0.03 1608 3.867 0.373 1612 3.848 0.386 1616 3.829 0.394 1622 3.801 0.404 0.04 1608 3.867 0.373 1614 3.839 0.385 1618 3.820 0.393 1622 3.801 0.404 0.05 1614 3.839 0.372 1616 3.829 0.385 1620 3.810 0.393 1624 3.792 0.403 0.06 1614 3.839 0.372 1618 3.820 0.384 1620 3.810 0.393 1624 3.792 0.403 0.07 1616 3.829 0.371 1620 3.810 0.384 1620 3.810 0.393 1626 3.782 0.403 0.08 1620 3.810 0.370 1622 3.801 0.384 1623 3.796 0.392 1632 3.755 0.401 0.09 1620 3.810 0.370 1624 3.792 0.383 1624 3.792 0.392 1634 3.745 0.401 0.1 1622 3.801 0.370 1624 3.792 0.383 1628 3.773 0.391 1636 3.736 0.400 X2EE = 0.0136 0.01 1660 3.604 0.360 1642 3.704 0.379 1616 3.844 0.394 1600 3.950 0.412 0.02 1662 3.586 0.359 1644 3.680 0.377 1616 3.829 0.394 1604 3.917 0.410 0.03 1662 3.577 0.359 1650 3.637 0.375 1620 3.792 0.392 1608 3.883 0.408 0.04 1664 3.546 0.357 1654 3.605 0.373 1622 3.767 0.390 1608 3.866 0.407 0.05 1664 3.524 0.356 1652 3.600 0.373 1624 3.744 0.389 1614 3.820 0.405 0.06 1666 3.502 0.355 1652 3.586 0.373 1626 3.719 0.388 1614 3.803 0.404 0.07 1668 3.481 0.354 1656 3.553 0.371 1628 3.694 0.387 1618 3.771 0.402 0.08 1672 3.449 0.352 1656 3.536 0.370 1632 3.658 0.385 1620 3.744 0.401 0.09 1674 3.427 0.351 1658 3.515 0.369 1634 3.637 0.384 1620 3.732 0.400 0.1 1676 3.404 0.350 1658 3.502 0.368 1634 3.620 0.383 1620 3.713 0.399 X2EE = 0.0301 0.01 1598 3.920 0.376 1572 4.080 0.397 1556 4.190 0.412 1524 4.410 0.435 0.02 1600 3.900 0.375 1576 4.040 0.395 1556 4.180 0.411 1524 4.420 0.435 0.03 1604 3.860 0.373 1580 4.010 0.394 1558 4.150 0.410 1530 4.340 0.432 0.04 1604 3.840 0.372 1582 3.980 0.392 1560 4.120 0.408 1532 4.310 0.430 0.05 1608 3.810 0.370 1586 3.940 0.390 1560 4.100 0.407 1532 4.290 0.429 0.06 1610 3.780 0.369 1586 3.930 0.390 1560 4.080 0.406 1532 4.280 0.429 AIJRSTEM 19-234; © 2019, AIJRSTEM All Rights Reserved Page 181 Surekha et al., American International Journal of Research in Science, Technology, Engineering & Mathematics,26(1), March-May 2019, pp. 179-187 0.07 0.08 0.09 0.1 1612 1616 1620 1624 3.760 3.720 3.690 3.660 0.368 0.366 0.364 0.363 1588 1594 1594 1594 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 1496 1498 1506 1508 1508 1510 1510 1526 1528 1530 4.580 4.540 4.470 4.430 4.410 4.380 4.360 4.250 4.220 4.190 0.406 0.404 0.401 0.399 0.398 0.397 0.396 0.391 0.390 0.388 1470 1476 1476 1480 1480 1484 1488 1488 1492 1496 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 1332 1360 1362 1380 1388 1390 1392 1398 1404 1408 5.890 5.700 5.650 5.470 5.390 5.330 5.290 5.210 5.140 5.080 0.460 0.453 0.451 0.444 0.440 0.438 0.436 0.433 0.430 0.428 1314 1330 1332 1334 1336 1354 1360 1368 1374 1376 3.900 0.388 1560 3.850 0.386 1562 3.840 0.385 1566 3.820 0.384 1574 X2EE = 0.0765 4.770 0.430 1438 4.710 0.427 1444 4.690 0.426 1448 4.640 0.424 1452 4.620 0.423 1458 4.570 0.421 1460 4.530 0.419 1460 4.500 0.417 146 4.460 0.415 1468 4.420 0.414 1472 X2EE =1.0000 6.190 0.489 1304 6.010 0.482 1306 5.960 0.480 1308 5.900 0.478 1308 5.860 0.476 1312 5.660 0.468 1326 5.580 0.465 1330 5.480 0.460 1336 5.400 0.457 1340 5.360 0.455 1344 4.070 4.040 4.000 3.950 0.406 0.404 0.402 0.400 1536 1540 1542 1546 4.230 4.200 4.170 4.130 0.426 0.424 0.423 0.421 5.030 4.970 4.910 4.860 4.810 4.770 4.740 4.720 4.650 4.600 0.451 0.448 0.446 0.443 0.441 0.439 0.438 0.437 0.434 0.431 1400 1402 1412 1420 1422 1426 1434 1436 1446 1448 5.350 5.320 5.220 5.130 5.090 5.040 4.960 4.920 4.830 4.800 0.479 0.478 0.473 0.469 0.467 0.465 0.461 0.459 0.455 0.454 6.340 6.290 6.230 6.190 6.120 5.950 5.850 5.800 5.730 5.660 0.506 0.504 0.502 0.500 0.498 0.491 0.486 0.484 0.481 0.478 1268 1268 1272 1278 1284 1298 1300 1300 1306 1312 6.760 6.730 3.650 6.550 6.440 6.270 6.210 6.180 6.080 5.990 0.539 0.537 0.396 0.530 0.526 0.519 0.516 0.515 0.511 0.507 4.74 Table 2.Experimentally determined density (d: kg.m-3), specific acoustic impedance (Z: kgm2s-1) and relative association (RA: mol/dm3) for KSCN in 2- ethoxyethanol + water mixtures with respect to concentration (C) at different temperatures. TEMPERATURE 288.15K 298.15K 308.15K 318.15K C 10-3d 10-5Z 0.01 0.02 0.03 0.04 0.05 1.0013 1.0060 1.0120 1.0157 1.0207 0.06 0.07 0.08 0.09 0.1 RA 10-3d 10-5Z 14.83 14.95 15.03 15.13 1.0008 1.0041 1.0097 1.0129 0.9987 1.0034 1.0085 1.0136 1.0185 1.0258 1.0306 1.0351 1.0395 1.0440 15.20 15.33 15.46 15.59 15.67 15.76 1.0179 1.0225 1.0255 1.0286 1.0325 1.0360 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 1.0040 1.0088 1.0124 1.0163 1.0221 1.0292 1.0327 1.0378 1.0422 1.0458 15.34 15.45 15.53 15.61 15.74 15.89 16.03 16.18 16.26 16.39 1.0051 1.0090 1.0122 1.0157 1.0206 1.0268 1.0285 1.0318 1.0362 1.0380 1.0002 1.0046 1.0095 1.0144 1.0187 1.0233 1.0279 1.0327 1.0367 1.0404 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 1.0074 1.0115 1.0156 1.0208 1.0261 1.0299 1.0338 1.0384 1.0422 1.0463 16.14 16.20 16.33 16.41 16.56 16.62 16.71 16.82 16.88 16.97 0.9951 0.9992 1.0020 1.0071 1.0111 1.0148 1.0182 1.0219 1.0257 1.0293 1.0020 1.0063 1.0111 1.0150 1.0200 1.0246 1.0286 1.0330 1.0371 1.0418 0.01 0.02 0.03 1.0068 16.72 1.0038 1.0013 1.0095 16.82 1.0061 1.0054 1.0122 16.89 1.0088 1.0098 1.0217 1.0223 1.0309 1.0355 1.0399 RA 10-3d 10-5Z X2EE= 0.0000 15.02 1.0008 0.9976 15.15 1.0041 1.0020 15.2 1.0097 1.0066 15.32 1.0129 1.0115 1.0159 15.45 1.0179 15.59 1.0225 1.0209 15.67 1.0255 1.0246 15.83 1.0286 1.0291 16.02 1.0325 1.0336 15.98 1.0360 1.0373 X2EE= 0.0023 15.44 1.0044 0.9980 15.57 1.0075 1.0027 15.65 1.0124 1.0073 15.76 1.0165 1.0117 15.87 1.0199 1.0160 15.98 1.0236 1.0207 16.09 1.0273 1.0252 16.18 1.0317 1.0299 16.33 1.0339 1.0339 16.43 1.0368 1.0377 X2EE= 0.0052 16.11 0.9931 0.9991 16.20 0.9974 1.0030 16.30 1.0021 1.0078 16.38 1.0060 1.0120 16.48 1.0109 1.0163 16.58 1.0151 1.0209 16.66 1.0182 1.0259 16.76 1.0221 1.0307 16.84 1.0262 1.0347 16.92 1.0308 1.0385 X2EE= 0.0136 16.44 1.0031 0.9961 16.53 1.0068 1.0002 16.66 1.0099 1.0049 AIJRSTEM 19-234; © 2019, AIJRSTEM All Rights Reserved RA 10-3d 15.16 15.27 15.32 15.43 1.0050 1.0087 1.0136 1.0170 15.53 15.66 15.73 15.84 15.97 16.08 1.0208 1.0243 1.0274 1.0307 1.0341 1.0366 0.9922 0.9948 0.9996 1.0044 1.0099 15.57 15.68 15.77 15.86 15.99 16.10 16.24 16.36 16.44 16.50 16.11 16.19 16.29 16.37 16.46 16.54 16.62 16.72 16.80 16.91 10-5Z RA 15.27 15.36 15.44 15.54 1.0016 1.0038 1.0086 1.0126 1.0156 1.0178 1.0234 1.0278 1.0302 15.63 15.67 15.79 15.87 15.96 16.08 1.0181 1.0234 1.0252 1.0304 1.0344 1.0355 1.0024 1.0063 1.0105 1.0144 1.0175 1.0213 1.0245 1.0283 1.0319 1.0357 0.9926 0.9955 1.0023 1.0064 1.0107 1.0163 1.0189 1.0240 1.0284 1.0316 15.68 15.75 15.88 15.94 16.07 16.16 16.22 16.38 16.45 16.59 1.0001 1.0026 1.0091 1.0132 1.0162 1.0219 1.0241 1.0275 1.0319 1.0334 0.9982 1.0017 1.0061 1.0099 1.0137 1.0183 1.0233 1.0277 1.0312 1.0342 0.9933 0.9961 1.0043 1.0075 1.0134 1.0165 1.0193 1.0275 1.0298 1.0332 15.76 16.09 16.14 16.29 16.34 16.46 16.51 16.57 16.77 16.83 16.90 0.9956 0.9984 1.0063 1.0095 1.0150 1.0181 1.0204 1.0274 1.0293 1.0322 16.09 1.0000 0.9888 15.82 16.16 1.0042 0.9922 15.91 16.28 1.0080 0.9961 16.02 0.9947 0.9972 1.0003 Page 182 Surekha et al., American International Journal of Research in Science, Technology, Engineering & Mathematics,26(1), March-May 2019, pp. 179-187 0.04 0.05 0.06 0.07 0.08 0.09 0.1 1.0185 1.0249 1.0288 1.0326 1.037 1.0412 1.0459 16.99 17.06 17.16 17.23 17.35 17.44 17.53 1.0146 1.0210 1.0245 1.0279 1.0314 1.0352 1.0394 1.014 1.0179 1.0217 1.0263 1.0312 1.0348 1.0388 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.9977 1.0021 1.0067 1.0122 1.0162 1.0206 1.0239 1.0283 1.0324 1.0362 15.94 16.03 16.15 16.24 16.34 16.34 16.50 16.62 16.73 16.83 1.0011 1.0050 1.0088 1.0143 1.0175 1.0215 1.0243 1.0279 1.0312 1.0341 0.9916 0.9957 0.9999 1.0039 1.0088 1.0128 1.0178 1.0217 1.0250 1.0301 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.9762 0.9818 0.9864 0.9926 0.9973 1.0016 1.0055 1.0111 1.0158 1.0202 14.60 14.71 14.85 14.97 15.04 15.12 15.18 15.43 15.52 15.61 1.0015 1.0068 1.0097 1.0156 1.0204 1.0243 1.0283 1.0304 1.0348 1.0389 0.9699 0.9747 0.9794 0.9838 0.9888 0.9932 0.9980 1.0029 1.0083 1.0119 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.9419 0.9481 0.9541 0.9594 0.9637 0.9710 0.9761 0.9813 0.9878 0.9938 13.49 12.89 12.99 13.23 13.38 13.49 13.59 13.71 13.87 13.99 1.0002 1.0023 1.0082 1.0094 1.0119 1.0191 1.0240 1.0280 1.0333 1.0386 1.0397 0.9411 0.9460 0.9522 0.9585 0.9642 0.9695 0.9752 0.9802 0.9862 16.77 1.0133 1.009 16.82 1.0176 1.0127 16.88 1.0214 1.017 17.00 1.0252 1.0213 17.08 1.0301 1.0263 17.16 1.0333 1.0297 17.22 1.0373 1.0345 X2EE= 0.0301 15.59 1.0038 0.9865 15.69 1.0071 0.9887 15.80 1.0105 0.9926 15.88 1.0141 0.9979 16.00 1.0182 1.0012 16.06 1.0222 1.0063 16.16 1.0268 1.0104 16.29 1.0295 1.0145 16.34 1.0329 1.0193 16.42 1.0379 1.0228 X2EE =0.0765 14.26 1.0021 0.9605 14.39 1.0058 0.9657 14.46 1.0106 0.9713 14.56 1.0142 0.9757 14.63 1.0194 0.9777 14.73 1.0230 0.9833 14.85 1.0270 0.9891 14.92 1.0320 0.9939 15.04 1.0367 0.9985 15.13 1.0394 1.0039 X2EE1.0000 13.66 1.0034 0.9276 12.54 1.0080 0.9320 12.60 1.0138 0.9380 12.70 1.0194 0.9445 12.80 1.0246 0.9496 13.06 1.0312 0.9551 13.19 1.0369 0.9605 13.34 1.0440 0.9662 13.47 1.0494 0.9725 13.57 1.0547 0.9782 16.37 16.45 16.54 16.62 16.75 16.83 16.90 1.0117 1.0150 1.0189 1.0228 1.0270 1.0300 1.0348 1.0005 1.005 1.0095 1.013 1.0177 1.0209 1.0263 16.09 16.22 16.29 16.39 16.49 16.54 16.63 1.0048 1.0080 1.0125 1.0152 1.0195 1.0227 1.0281 15.34 15.38 15.47 15.58 15.62 15.7 15.76 15.84 15.96 16.09 1.0045 1.0068 1.0103 1.0153 1.0187 1.0238 1.0280 1.0317 1.0357 1.0375 0.9764 0.9752 0.9835 0.9876 0.9924 0.9954 1.0013 1.0047 1.0094 1.0129 14.88 14.86 15.05 15.13 15.20 15.25 15.30 15.47 15.56 15.65 1.0035 1.0022 1.0094 1.0132 1.0181 1.0212 1.0264 1.0289 1.0333 1.0360 13.81 13.94 14.06 14.16 14.25 14.36 14.44 14.51 14.68 14.77 1.0002 1.0042 1.0091 1.0127 1.0134 1.0188 1.0248 2.2186 1.0326 1.0373 0.9529 0.9560 0.9606 0.9658 0.9714 0.9766 0.9810 0.9861 0.9905 0.9944 13.34 13.40 13.56 13.71 13.71 13.92 14.06 14.16 14.32 14.39 0.9996 1.0024 1.0048 1.0084 1.0137 1.0182 1.0209 1.0257 1.0279 1.0315 12.09 12.17 12.26 12.35 12.46 12.66 12.77 12.90 13.03 13.15 1.0045 1.0082 1.0152 1.0206 1.0256 1.0310 1.0363 1.0425 1.0498 1.0554 0.9203 0.9239 0.9293 0.9349 0.9414 0.9471 0.9522 0.9575 0.9636 0.9698 11.67 11.71 11.82 11.95 12.09 12.29 12.38 12.45 12.58 12.72 1.0058 1.0087 1.0145 1.0212 1.0300 1.0351 1.0407 1.0453 1.0509 1.0565 Apparent Molar Compressibility ( k ): Apparent molar compressibility was calculated using the equation (6) is a function of concentration as suggested by Gucker [25] as follows ɸk = ɸ0k + Sk √C (9) Where ɸ0kis the limiting apparent molar compressibility and Skis obtained from the intercept of the linear plot (Fig. 1) of ɸkversus √C, and association constant Sk is the experimental slope. The limiting apparent compressibility (ɸ0k) and related constant Sk values obtained are provided in Table 3. Most of the negative values of ɸ0k strengthen the view that there exist solute-solvent interactions in the system and the loss of compressibility of solvent due to electrostrictive solvation [22]. The positive Sk values signify the existence of ion-ion interaction of the system and also structure breaking property of the electrolyte. Table 3. Computed limiting apparent molar compressibility ((ϕ0k: m2 mol -1)) and the slope Sk for KSCN in 2 - ethoxyethanol + water mixtures at different temperatures. TEMPERATURE 288.15K 298.15K 308.15K 318.15K X2EE 1015 Φ0k 0.0000 0.0023 0.0052 0.0136 0.0301 0.0765 1.0000 -223.00 -609.30 -1022.00 2989.00 -455.20 -103.20 -1664.00 1015Sk 47.50 442.30 927.80 -2503.00 357.20 -41.75 150.90 1015 Φ0k -518.20 -530.20 -902.20 -929.00 102.40 -234.70 -2249.00 1015Sk 309.00 431.20 847.10 856.10 -131.50 140.40 416.10 1015 Φ0k -339.50 644.80 -401.40 975.00 -973.00 -842.00 -2391.00 1015Sk 279.00 -880.00 446.00 -959.00 816.70 729.80 444.40 1015 Φ0k -94.55 -122.90 -376.30 1021.00 150.20 -609.30 -1829.00 1015Sk 68.10 37.98 401.90 -994.90 -140.00 326.30 -53.16 Apparent Molar Volume (ϕv) The apparent molar volume ϕv is calculated using the equation 7. The relation between apparent molar compressibility and √C is given by least squares method as, AIJRSTEM 19-234; © 2019, AIJRSTEM All Rights Reserved Page 183 Surekha et al., American International Journal of Research in Science, Technology, Engineering & Mathematics,26(1), March-May 2019, pp. 179-187 ɸv = ɸ0v + Sv √C (10) The linear plotof apparent molar volume (ϕv) versus √C is shown Fig. 2. The intercept and slope obtained from this gives limiting apparent molar volume (ϕ0v) and its related constant Sv. Computed molar volume (ϕ0v) and Sv values are presented in the Table 4. The preferential solvation of the ions by different species in the solvent system and type of interaction between solvent molecules are due to change in partial molar volume with respect to change in compositions of solvent mixtures. The positive ϕ0vin all the compositions of solvent strengthen the strong ion-solvent interactions. Negative Sv values are interpreted as a sign of weak ion-ion interaction and also gives information about inter ionic penetration of the ions in the solvent structure [26]. Relatively lower ϕ0v values for potassium thiocyanate in solvent mixture were found at X 2EE=0.0052, implies strong solvent–solvent interaction. In the present work, larger ϕ0v values substantiate strong ion-solvent interactions. Table 4. Computed limiting apparent molar volume ((ϕ0v: m2 mol -1)) and the slope Sv for KSCN in 2 - ethoxyethanol + water mixtures at different temperatures TEMPERATURE 288.15K 298.15K 308.15K 318.15K X2EE 0.0000 0.0023 0.0052 0.0136 0.0301 0.0765 1.0000 106Φ0v 61.45 63.64 44.84 71.85 56.36 64.25 324.90 106Sv -928.00 -41.19 26.02 -60.05 -9.17 -41.58 -124.40 106 Φ0v 61.38 61.78 62.16 69.34 66.25 51.57 285.60 106 Φ0v 31.87 61.90 72.17 86.15 48.65 57.81 304.00 106 Sv -7.33 -25.58 -29.89 -40.87 -33.48 1.23 3.86 106Sv -9.69 -23.84 -61.89 -83.83 18.62 -13.65 -49.33 106Φ0v 86.13 64.48 63.07 111.40 64.91 80.39 302.90 106Sv -33.43 -26.29 -21.98 -153.00 -24.12 -89.38 -31.44 Solvation Number (Sn): Solvation number (Sn) of an ion is the number of solvent molecules surrounded to that ion which loses entire translational degree of freedom and always moves along with the ion. The theory proposed by Passynski [27] was used for calculating solvation numbers (equation 8). The computed values of S n values for KSCN in 2ethoxyethanol+water mixture at 298.15K are presented in the Table 5. The S n values are found an initial increase followed by later decrease as the amount of 2-ethoxyethanol is increased in the mixture. Strong solute–solvent interaction is observed at X2EE = 0.0052 since highest Sn values found at this composition. Table 5. Calculated solvation number (Sn) for KSCN in 2 – ethoxy ethanol + water mixtures at different temperatures X2EE C 0.0000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -2.0 2.5 2.1 3.4 4.1 4.6 4.0 4.7 5.3 4.5 0.0023 -5.1 0.6 1.2 2.1 2.2 2.4 3.2 3.2 3.7 3.7 0.0052 0.0136 24.7 12.9 9.0 7.0 5.8 5.0 4.5 4.0 3.7 3.3 0.0301 -1.0 0.7 1.9 2.3 1.9 1.8 2.1 2.0 2.0 2.0 0.0765 -0.6 1.1 1.5 1.6 1.9 1.7 1.7 2.0 1.8 1.8 1.0000 2.1 2.3 1.8 1.9 1.7 1.7 1.7 1.7 1.7 1.7 2.3 2.7 2.1 1.9 1.6 1.9 1.9 1.8 1.8 1.7 VI. Conclusions Various ultrasonic parameters calculated have been effectively used to explain the ion-ion, ion-solvent and solvent-solvent interactions in the system comprising of potassium thiocyanate, 2-ethoxyethanol and water. Ultrasonic studies revealed that the ternary system involves strong solvent-solvent interactions at X2EE = 0.0136 as a result of formation of hydrophobic aggregations. The positive S k values specify the structure breaking nature of KSCN in 2-ethoxyethanol+water media. Highest solvation number was observed at X 2EE = 0.0052 indicating strong solute-solvent interactions for KSCN in 2-ethoxyethanol + water system at 298.15K. AIJRSTEM 19-234; © 2019, AIJRSTEM All Rights Reserved Page 184 Surekha et al., American International Journal of Research in Science, Technology, Engineering & Mathematics,26(1), March-May 2019, pp. 179-187 Figure1.Plot of ϕk ( m2 mol -1) Vs √C ( mol1/2 dm-3/2) for KSCN in 2- ethoxyethanol + water mixture at different Temperatures 2000 2000 X2EE= 0.0000 √C 1000 0 -10000.00 0.50 1.00 1.50 ɸk -2000 ɸk -3000 √C X2EE=0.0052 1.50 -2000 0.50 1.00 4000 X2EE=0.0136 √C 2000 1.50 -4000 -6000 -8000 ɸk -10000 -12000 -14000 -16000 -18000 0 -20000.00 ɸk 0.50 1.00 1.50 -4000 -6000 -8000 -10000 -12000 X2EE=0.0301 8000 6000 4000 2000 0.50 1.00 -4000 √C 1.50 14000 12000 10000 8000 6000 ɸk 4000 2000 0 -20000.00 X2EE=0.0765 0.50 -4000 -6000 -6000 -8000 30000 1.00 -6000 -7000 0 -20000.00 0.50 -5000 -6000 ɸk √C -4000 -5000 10000 0 0.00 -1000 -3000 -4000 0 -20000.00 X2EE=0.0023 1000 1.00 √C 1.50 X2EE=1.0000 25000 20000 ɸk 288.15K 298.15K 308.15K 318.15K 15000 10000 5000 0 0.00 -5000 -10000 0.50 1.00 √C 1.50 AIJRSTEM 19-234; © 2019, AIJRSTEM All Rights Reserved Page 185 Surekha et al., American International Journal of Research in Science, Technology, Engineering & Mathematics,26(1), March-May 2019, pp. 179-187 Figure2. Plot of ϕv ( m3 mol -1) Vs √C ( mol1/2 dm-3/2) for KSCN in 2- ethoxyethanol + water mixture at different Temperatures 100 X2EE=0.0000 100 80 60 60 ɸv ɸv 40 40 20 20 0 0.00 0.50 √C 1.00 0 0.00 1.50 0.10 0.20 0.30 0.40 √C 200 X2EE=0.0052 100 ɸv X2EE=0.0023 80 80 150 60 ɸv 100 40 X2EE= 0.0136 50 20 0 0.00 0 0.00 0.10 0.20 0.30 0.10 0.20 0.40 0.40 √C √C 120 80 X2EE=0.0301 X2EE=0.0765 100 60 ɸv 0.30 ɸv 40 80 60 40 20 0 0.00 20 0.10 0.20 0.30 0.40 0 0.00 0.10 0.20 0.40 √C √C 400 0.30 X2EE=1.0000 300 ɸv 200 288.15K 298.15K 308.15K 318.15K 100 0 0.00 0.10 0.20 0.30 0.40 √C V. References [1] [2] S. Muralinatahn and S. Nithiyananthan, Ultrasonic study of molecular interactions in binary mixtures at 303K, E- Journal of Chemistry, Vol. 7(2), 2010, pp 353- 356 Manoj Kumar Praharaj, Ultrasonic study in ternary liquid mixtures at different frequencies, International Journal of recent innovations in Engineering and Research, Vol.2, Issue. 05, May-2017, pp 13-17 AIJRSTEM 19-234; © 2019, AIJRSTEM All Rights Reserved Page 186 Surekha et al., American International Journal of Research in Science, Technology, Engineering & Mathematics,26(1), March-May 2019, pp. 179-187 [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]. [21] [22] [23] [24] [25] [26] [27] Manoj Kumar Praharaj, Ultrasonic and conductometric studies of NaCl solution through ultrasonic parameters, International Journal of Recent Innovation in Engineering and Research, Vol. 3, Issue. 2, 2018, pp 12-16 R. Palani , A. Geetha and Rabindra Kumar Swara, Ultrasonic studies on molecular interaction and physicalbehavior of some divalent transition metal sulphates in aqueous propylene glycol at 303.15K, Rasayana Journal of Chemistry, Vol 2, No. 3, 2009, pp 602-608 Manoj Kumar Praharaj and Sarmistha Misra, Ultrasonic study of certain binary mixture in terms of the excess values of thermodynamic properties, International Journal of Scientific Research, Vol. 7, Issue. 2, 2016, pp 9123-9128 J. I. Bhat and H. R. Shivakumar, Condutometric amd ultrasonic studies on ion solvent interaction of K+ of KSCN in n water + methanol / ethanol mixtures, Indian Journal of Chemistry and Technology, Vol 10, 2003, pp 07-13 H. R. Shivakumar and Siju N. Antony, Thermo acoustical Investigation of potassium thiocyanate in 2- propanol + water mixture, International Journal of Pure and applied Chemistry, Vol 6, No. 1, 2011, pp 65-73 Shanmuga. P and Nithya. S.V, G. Velraj, A.N. Kanappan, Molecular interaction studies in liquid mixture using ultrasonic Technique, International Journal of Advanced Science and Technology, Vol 18, 2010, pp 59-74 A. A. Newman, Chemistry and biochemistry of thiocyanic acid and its derivatives, Academic Press, London, 1975 E. E. Reid, Organic chemistry of bivalent sulphur, Vol 6, Chemical Publishing Co., New York, 1966 J. Ishwara Bhat and H. R. Shivakumar, Acoustic and solvation behavior of potassium thiocyanate in mixed solvents, Indian Journal of Pure and Applied Physics, Vol 38, 2000, pp. 306-312 2- Ethoxyethanol, as a substance of very high concern because of its CMR properties, SVHC support document, European Chemical Agency, 2010, pp 1-14 Nikam P. S, Neena Nikam, Mehadi Hassan and Surya Wanshi B. S, Asam Journal of Chemistry, Vol 6,1994, pp 237 S. Thirumaran, G. George, G. Nageswari and K. Sathish, Structure-making and breaking behaviour of some base amino acids in aqueous dimethyl sulphoxide (DMSO) medium at varying temperatures, International Journal of Research in Pure and Applied Physics, Vol 3, 2013, pp 10-15 Siju N. Antony, Ph.D, Thesis, VisvesvarayaTechnological University, Belgaum, October 2013 G. Venkata Ramana, Ultrasonic studies on dilute solutions of water in n-alcohols and 2-alkoxyethanols, Indian Journal of Pure and Applied Physics, Vol 43, 2005, pp 259-264 Omprakash P. Chimankar, Ranjeeta Shriwas and Vilas A. Tabhane, Intermolecular interaction studies in some amino acids with aqueous NaOH, J. Chemical & Pharmc3utical Research, Vol 3, 2011, 587 – 597 B. Hemalatha, P. Vasantharani, N. Senthil Kumar, Solute – solvent interactions of TBAB in DMF – water system at different temperatures, International Journal of Advances in Engineering and Technology, May 2013, Vol 6, Issue 2, pp 795-803 Jacobson B , Intermolecular free length in the liquid state, Adiabatic compressibility, Acta Chem scand, Vol 6, 1952, pp 1485 S.Azhagiri, S.Jayakumar, R.Padmanaban, S.Gunashekaran, S.Srinivasan, Acoustic and Thermodynamic Properties of Binary Liquid Mixtures of Benzaldehyde in Hexane and Cyclohexane, Journal of Solution Chemistry, Vol 38, 2009, pp 441-448 J. D. Pandey, V. Sanguri, M. K. Yadav and A. Singh, Intermolecular free length and free volume of pure liquids at varying temperatures and pressures, Indian Journal of Chemistry, Vol 47A, 2008, pp 1020-1025 H. R. Shivakumar, Ph. D Thesis, Mangalore University, October 2000 M. Surekha, H. R. Shivakumar, Siju N. Antony, Acoustical studies omn molecular interactions of tetra butyl ammonium in 2-ethoxyethanol and water mixtures at 288.15 K to 318.15K, International Journal of Research in science and Engineering, Vol. 6, 2017, pp. 1489-1501. S. Kant, A. Kapil and K. Sharma, Ultrasonic velocity and density measurements of lithium chloride in different compositions of lactose at different temperatures, Der Chemica Sinica, Vol 3, 2012, pp 667-676 F.T.Gucker, The apparent molal heat capacity, volume and compressibility of electrolytes, Chem, Rev., Vol 13,1933, pp 111-130. M. L. Parmar and M. K. Guleria, Partial molar volumes of oxalic acid and its salts in water-rich binary aqueous mixtures of methanol, Indian Journal of Chemistry, Vol 48A, 2009, pp 806-811 A. Passynski, Compressibility and solvation of solutions of electrolytes, Acta Physicochimica U.R.S.S., Vol 8, 1938, pp 385-418 VI. Acknowledgements The financial support for this investigation given by Visvesvaraya Technological University, Belgaum, India under the grant Ref. No. VTU/Aca/2010-11/A-9/11329 dated 17th December 2010; VGST, Government of Karnataka; Dr. Renuka Prasad K. V. General Secretary, AOLE, Sullia are gratefully acknowledged. AIJRSTEM 19-234; © 2019, AIJRSTEM All Rights Reserved Page 187