Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Trab cromatografia

CROMATOGRAFIA GASOSA INTRODUÇÃO A Cromatografia Gasosa (CG) é uma técnica para separação e análise de misturas de substâncias voláteis. (A amostra é vaporizada e introduzida em um fluxo de um gás adequado denominado de fase móvel (FM) ou gás de arraste). Este fluxo de gás com a amostra vaporizada passa por um tubo contendo a fase estacionária FE (coluna cromatográfica), onde ocorre a separação da mistura. A FE pode ser um sólido adsorvente (Cromatografia Gás-Sólido) ou, mais comumente, um filme de um líquido pouco volátil, suportado sobre um sólido inerte (Cromatografia Gás-Líquido com Coluna Empacotada ou Recheada) ou sobre a própria parede do tubo (Cromatografia Gasosa de Alta Resolução). Na cromatografia gás-líquido (CGL), os dois fatores que governam a separação dos constituintes de uma amostra são: A solubilidade na FE: quanto maior a solubilidade de um constituinte na FE, mais lentamente ele caminha pela coluna. A volatilidade: quanto mais volátil a substância (ou, em outros termos, quanto maior a pressão de vapor), maior a sua tendência de permanecer vaporizada e mais rapidamente caminha pelo sistema. As substâncias separadas saem da coluna dissolvidas no gás de arraste e passam por um detector; dispositivo que gera um sinal elétrico proporcional à quantidade de material eluido. O registro deste sinal em função do tempo é o cromatograma, sendo que as substâncias aparecem nele como picos com área proporcional à sua massa, o que possibilita a análise quantitativa INSTRUMENTAÇÃO Os constituintes básicos de um sistema cromatográfico são: Reservatório de Gás de Arraste. O gás de arraste fica contido em cilindros sob pressão. Assim, a escolha do gás de arraste independe da amostra a ser separada. O parâmetro mais importante é a sua compatibilidade com o detector (alguns detectores trabalham melhor quando se usam determinados gases). Os gases mais empregados são H2, He e N2 e a vazão do gás de arraste, que deve ser controlada, é constante durante a análise. Sistema de Introdução de Amostra. Na CG, a seção do cromatógrafo gasoso onde é feita a introdução da amostra é o injetor (ou vaporizador). Na versão mais simples, trata-se de um bloco de metal conectado à coluna cromatográfica e à alimentação de gás de arraste. Este bloco contém um orifício com um septo, geralmente de borracha de silicone, pelo qual amostras líquidas ou gasosas podem ser injetadas com microseringas hipodérmicas. Amostras sólidas podem ser dissolvidas em um solvente adequado. O injetor deve estar aquecido a uma temperatura acima do ponto de ebulição dos componentes da amostra, para que a amostra se volatilize completa e instantaneamente e seja carregada para a coluna. Se a temperatura for excessivamente alta, pode ocorrer decomposição da amostra. A amostra deve entrar na coluna na forma de um segmento estreito, para evitar alargamento dos picos; Coluna Cromatográfica e Controle de Temperatura da Coluna. Depois de injetada e vaporizada, a amostra é introduzida na coluna cromatográfica, onde é efetuada a separação. Na CG a "afinidade" de um soluto pela FM é determinada pela volatilidade do soluto, sua pressão de vapor, que é função da estrutura do composto e da temperatura. Alterando-se a temperatura, altera-se também a pressão de vapor e, por conseguinte, a "afinidade" de uma substância pela FM; O detector quantifica e indica o que sai da coluna; Eletrônica de tratamentos: Purifica os ruídos para melhor análise; Registro de sinal: Analisa e avalia os dados obtidos no processo.   FASES ESTACIONÁRIAS Na CG existe um grande número de fases estacionárias líquidas e sólidas disponíveis comercialmente, de modo que a natureza da FE é a variável mais importante na otimização da seletividade. As FE líquidas são as mais empregadas em CG. FE sólidas (carvão ativo, sílica, peneiras moleculares e polímeros porosos) são aplicadas para separação de gases e compostos de baixo massa molar. Em princípio, para um líquido ser usado como FE em CG ele deve ser pouco volátil (pressão de vapor até 0,1 mmHg ou 13,332 Pa na temperatura de trabalho) e termicamente estável. Para esta fase ser empregada em uma separação em particular, ela precisa: Ser um bom solvente para os componentes da amostra, caso contrário o efeito será o mesmo de temperaturas de coluna excessivamente altas (os compostos ficarão quase que o tempo todo no gás de arraste, sendo eluidos muito rapidamente e sem separação); Ser um bom solvente diferencial, isto é, além de dissolver bem todos os constituintes da amostra, fazê-lo com solubilidades suficientemente diferentes para que eles possam ser separados; e ser quimicamente inerte em relação à amostra. Via de regra, fase estacionária com estruturas similares à da amostra dissolverão melhor seus constituintes, provendo melhores seletividades e separações. FE polares dissolvem melhor compostos polares, etc. Por exemplo: hidrocarbonetos podem ser separados eficientemente usando esqualano (um alcano de massa molar elevada). As FE mais populares são os silicones. Silicones são polímeros extremamente estáveis e inertes, o que os torna e especialmente adequados à CG. Nesta classe, as polidimetilsiloxanas são os menos polares. A substituição dos grupos metila na cadeia por outros grupos (fenil, ciano, trifluoropropil, etc.) fornece FE com polaridades crescentes. Deste modo, eles podem ser empregados na separação de misturas das mais diversas polaridades. Comercialmente, são disponíveis sob diversas denominações, muitas delas praticamente equivalentes. SE-30, OV-1 e DC-200 são nomes comerciais para polidimetilsiloxano de fabricantes diferentes.  COLUNA CROMATOGRÁFICA A coluna cromatográfica é o local onde ocorre a interação entre a amostra e a FE. Existem duas geometrias básicas de colunas para CG: as colunas empacotadas (ou recheadas), e as colunas tubulares abertas (ou capilares). Nas colunas empacotadas, a FE líquida é depositada sob a forma de um filme fino e uniforme sobre partículas de um suporte adequado. O suporte deve ser um sólido poroso com grande área superficial, inerte e de boa resistência mecânica. O tamanho das partículas e dos poros deve ser o mais uniforme possível. O material mais empregado como suporte é a diatomite, esqueletos fósseis de algas microscópicas (diatomáceas), compostos principalmente de SiO2 amorfa e traços de óxidos metálicos. Muitas vezes, o material é submetido a tratamentos químicos para diminuir a sua atividade superficial, e torná-lo mais inerte. DETECTOR O detector indica e quantifica os componentes separados pela coluna. Um grande número de detectores tem sido descritos e usados em CG. Existem, entretanto, algumas características básicas comuns para descrever seu desempenho: Seletividade. Alguns detectores apresentam resposta para qualquer substância diferente do gás de arraste que passe por ele. Estes são os chamados detectores universais. Por outro lado, existem detectores que respondem somente a compostos que contenham um determinado elemento químico em sua estrutura, que são os detectores específicos. Entre estes dois extremos, alguns detectores respondem a certas classes de compostos (detectores seletivos). Ruído. São os desvios e oscilações na linha de base (sinal do detector quando só passa o gás de arraste). Pode ser causado por problemas eletrônicos, impurezas e sujeiras nos gases e no detector, etc. Por melhor que seja o funcionamento do sistema, sempre existe ruído. Tipo de Resposta. Alguns detectores apresentam um sinal que é proporcional à concentração do soluto no gás de arraste; em outros, o sinal é proporcional à taxa de entrada de massa do soluto no detector. Isto depende do mecanismo de funcionamento de cada detector. Quantidade Mínima Detectável (QMD). É a quantidade de amostra mínima para gerar um sinal duas vezes mais intenso que o ruído. É uma característica intrínseca do detector. Quanto menor a QMD, mais sensível o detector. Fator de Resposta. É a intensidade de sinal gerado por uma determinada massa de soluto, que depende do detector e do composto estudado. Pode ser visualizado como a inclinação da reta que correlaciona o sinal com a massa de um soluto (curva de calibração). Quanto maior o fator de resposta, mais confiável a análise quantitativa. Faixa Linear Dinâmica. É a razão entre a menor e a maior massa entre as quais o fator de resposta de um detector para um soluto é constante, isto é, onde a curva de calibração é linear. Os dois detectores mais significativos em CG são o Detector por Condutividade Térmica (DCT) e o Detector por Ionização em Chama (DIC).   O funcionamento do DCT é baseado no fato de que a velocidade de perda de calor de um corpo quente para um corpo mais frio é proporcional, dentre outros fatores, à condutividade térmica do gás que separa estes corpos. Um filamento metálico muito fino (de W, Au ou liga W-Re) é aquecido pela passagem de uma corrente elétrica constante. Este filamento fica montado dentro de um orifício em um bloco metálico (cela), aquecido a uma temperatura mais baixa que aquela do filamento, por onde o gás de arraste proveniente da coluna passa continuamente. Enquanto passar gás de arraste puro pela cela, a taxa de perda de calor do filamento para o bloco é constante e a temperatura do filamento não varia. Quando um componente é eluido da coluna, ele sai misturado com o gás de arraste e passa pelo detector. Se a condutividade desta mistura for diferente daquela do gás de arraste puro, o filamento passa a perder calor para o bloco numa taxa diferente daquela do equilíbrio. Por exemplo, se a taxa de perda de calor diminuir, o filamento se aquece quando a amostra é eluida. O aquecimento do filamento causa uma variação na sua resistência elétrica e a resistividade de um metal aumenta com a temperatura. O filamento é montado em um circuito de ponte de Wheatstone, que converte a variação na resistência elétrica do filamento numa variação de voltagem, que é coletada em um registrador gerando o cromatograma. Figura 3 - Cela de um detector de condutividade térmica.  O DCT é um detector universal, sensível à concentração do soluto no gás de arraste. Geralmente, quando se usa DCT, o gás de arraste é He ou H2. Pelo fato destes gases terem condutividades térmicas altíssimas, as misturas gás de arraste mais o soluto sempre terão condutividades térmicas menores que a do gás de arraste puro, o que impede sinais negativos, além de se obter maiores fatores de resposta. Entretanto, ele é considerado um detector pouco sensível. A QMD de um modelo moderno, para propano, é de 400 pg/ml de gás de arraste, com faixa linear de 106. Apesar disso, o fato de ser universal, barato e de operação simples, o faz extremamente útil para análises que não necessitem de alta sensibilidade. Durante a queima de um composto orgânico, são formados diversos íons e como consequência, a chama resultante torna-se condutora de eletricidade. O funcionamento do DIC baseia-se neste fenômeno. O gás de arraste saindo da coluna cromatográfica é misturado com H2 e queimado com ar ou O2. A chama resultante fica contida entre dois eletrodos, polarizados por uma voltagem constante. Como a chama de H2 forma poucos íons, ela é um mal condutor elétrico e quase nenhuma corrente passa entre os eletrodos. Ao eluir um composto orgânico, ele é queimado e são formados íons na chama, que passa a conduzir corrente elétrica. A corrente elétrica resultante, da ordem de pA, é amplificada e constitui o sinal cromatográfico. Figura 4 - Cela de um detector por ionização de chama.  Quase todos compostos orgânicos podem ser detectados pelo DIC. Apenas substâncias não inflamáveis (CCl4, H2O) ou algumas poucas que não formam íons na chama (HCOOH) não dão sinal. Assim, ele é um detector praticamente universal. De um modo geral, quanto ligações C-H tiver o composto, maior a sua resposta (maior sensibilidade). Ele é muito mais sensível que o DCT, pois dependendo do composto, podem ser detectados entre 10 pg e 400 pg, com faixa linear dinâmica de 107. Provavelmente é o detector mais usado em CG.   QUANTIZAÇÃO DOS RESULTADOS  A CG é uma técnica eminentemente quantitativa. O princípio básico da quantificação é que a área dos picos registradas no cromatograma é proporcional à massa do composto injetada. Assim, é fundamental para a confiabilidade da análise que a área dos picos seja medida o mais exata e reprodutível possível. Existem vários modos de se medir a área de um pico cromatográfico: - Técnicas Manuais. Quando o cromatograma é coletado por um registrador analógico, usualmente a área dos picos é medida manualmente. O procedimento mais empregado consiste em supor que o pico cromatográfico se aproxima de um triângulo isósceles. Mede-se a altura do pico (h) e a sua largura de base (wb) ou à meia-altura (wh), e calcula-se a área pelas fórmulas usadas para cálculo de área de triângulo: ou A conveniência de se usar uma ou outra forma depende da largura do pico, da assimetria, etc. Pode-se também substituir a área pela altura do pico. Isto só é possível para picos estreitos e simétricos. - Integradores Eletrônicos. Integradores são dispositivos baseados em microprocessadores que coletam o sinal cromatográfico, digitalizam-no (transformam o sinal elétrico em números), detectam a presença de picos e calculam a sua área. Integradores são muito mais precisos e rápidos que qualquer método manual de medida, desde que empregados convenientemente. Embora sejam dispositivos caros, quando é necessária rapidez na produção de resultados, o seu uso é quase mandatório. - Computadores. O integrador pode ser substituído por um computador, desde que este tenha um dispositivo para converter o sinal elétrico em números que possam ser guardados em memória (conversor analógico-digital), e se disponha de programas adequados para fazer a análise do cromatograma digitalizado. O custo de um computador com os acessórios necessários para coletar e analisar cromatogramas é, via de regra, inferior ao de um bom integrador. Além disso, com um software e operação adequada, pode fornecer resultados mais confiáveis que este último. Qualquer que seja o modo usado para medir a área dos picos, o procedimento geral de uma análise quantitativa por CG envolve a obtenção do cromatograma da amostra, a medida da área dos picos de interesse e o cálculo da massa correspondente a cada um dos picos. Este cálculo deve ser feito empregando uma curva de calibração: um gráfico correlacionando a área do pico com a massa do composto. A curva de calibração é obtida cromatografando-se padrões contendo massas conhecidas dos compostos a serem quantificados. Para cada substância, deve ser feita uma curva de calibração própria, já que cada composto responde de maneira diferente ao detector. O esquema geral proposto acima é chamado de padronização externa. Como é muito difícil conseguir boa reprodutibilidade entre injeções diferentes, ele é muitas vezes sujeito à grande imprecisão e inexatidão. Para contornar este problema, pode-se usar a chamada padronização interna, onde a cada solução a ser injetada adiciona-se uma quantidade exatamente igual de um composto que seja separável dos componentes da amostra, e que não exista nela (padrão interno). Como para todas as soluções, tanto das amostras como dos padrões existe a mesma massa do padrão interno, a área do seu pico deverá ser a mesma. Este fato faz com que este pico possa ser usado para corrigir a área dos picos dos constituintes da amostra e dos padrões, eliminando-se, pelo menos parcialmente muitas deficiências da injeção. BIBLIOGRAFIA: ATKINS, Peter; JONES, Loretta. Princípios de Química: questionando a vida moderna e o meio ambiente. Porto Alegre, 2001. Editora Bookmam. EWING, Galen W. Métodos Instrumentais de Análise Química. São Paulo, 2002. Editora Edgar Blücher. http://www.pucrs.br/quimica/professores/arigony/cromatografia_FINAL/cg.htm