Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Effective Field Theories for Hot and Dense Matter

EPJ Web of Conferences
...Read more
Effective Field Theories for Hot and Dense Matter David Blaschke 1,2, a 1 University of Wroclaw, 50-204 Wroclaw, Poland 2 Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, 141980 Dubna, Russia Abstract. The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1,2]. The basics of the path integral approach to the parti- tion function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approxima- tion (Gaussian fluctuations). Special emphasis is devoted to the discussion of the Mott eect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1) the QCD model phase diagram with chiral symmetry restoration and color superconductivity [3], (2) the Schr¨ odinger equation for heavy-quarkonia [4], and (2) Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent ap- plications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for ther- modynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The eect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is dis- cussed. An outlook is given to eects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description. References 1. J.I. Kapusta and C. Gale, Finite Temperature Field Theory, Cambridge University Press (2006). 2. K. Yagi, T. Hatsuda and Y. Miake, Quark-Gluon Plasma, Cambridge University Press (2005). 3. D. Blaschke, S. Fredriksson, H. Grigorian, A. M. Oz- tas and F. Sandin, Phys. Rev. D 72, 065020 (2005). 4. D. Blaschke, O. Kaczmarek, E. Laermann and V. Yu- dichev, Eur. Phys. J. C 43, 81 (2005). 5. D. Zablocki, D. Blaschke and R. Anglani, AIP Conf. Proc. 1038, 159 (2008). 6. D. Blaschke, G. Burau, Yu. L. Kalinovsky and V. L. Yudichev, Prog. Theor. Phys. Suppl. 149, 182 (2003). 7. R. Rapp, D. Blaschke and P. Crochet, “Charmonium and bottomonium production in heavy-ion collisions,” arXiv:0807.2470. 8. D. Blaschke, T. Klaehn and F. Weber, in: Astronomy and Relativistic Astrophysics, World Scientific, Sin- gaprore (2010), pp. 31-47; [arXiv:0808.1279 [astro- ph]]. 9. C. Ratti, M. A. Thaler and W. Weise, Phys. Rev. D 73, 014019 (2006) 10. H. Hansen, W. M. Alberico, A. Beraudo, A. Moli- nari, M. Nardi and C. Ratti, Phys. Rev. D 75, 065004 (2007). 11. D. Gomez Dumm, D. B. Blaschke, A. G. Grunfeld and N. N. Scoccola, Phys. Rev. D 78, 114021 (2008). 12. D. Blaschke, M. Buballa, A. E. Radzhabov and M. K. Volkov, Yad. Fiz. 71, 2012 (2008). © Owned by the authors, published by EDP Sciences, 2010 DOI:10.1051/epjconf/20100701003 EPJ Web of Conferences 7, 01003 (2010) 7 This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly cited. Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20100701003
E FFECTIVE FIELD THEORIES FOR HOT AND DENSE MATTER (I) David Blaschke Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia Introduction: Many-particle Systems and Quantum Field Theory Partition function for QCD: Lattice Simulations vs. Resonance Gas Bound states and Mott effect, Color superconductivity Heavy Quarkonia - Schr ¨ odinger Equation Chiral quark model - Color superconductivity Pions, Kaons, D-mesons - Chiral Quark Model Application 1: J/ψ suppression in Heavy-Ion Collisions Application 2: Quark Matter in Compact Stars Summary / Outlook to Lecture II MANY PARTICLE S YSTEMS &QUANTUM F IELD T HEORY Elements Bound states System humans, animals couples, groups, parties society molecules, crystals (bio)polymers animals, plants atoms molecules, clusters, crystals solids, liquids, ... ions, electrons atoms plasmas nucleons, mesons nuclei nuclear matter quarks, anti-quarks nucleons, mesons quark matter Highly Compressed Matter Pauli Principle Partition function: Z = Tr e β(Hμ i Q i ) EPJ Web of Conferences 01003-p.2
7 01003 (2010) EPJ Web of Conferences 7, DOI:10.1051/epjconf/20100701003 © Owned by the authors, published by EDP Sciences, 2010 Effective Field Theories for Hot and Dense Matter David Blaschke1,2,a 1 2 University of Wrocław, 50-204 Wrocław, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, 141980 Dubna, Russia Abstract. The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1,2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations). Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1) the QCD model phase diagram with chiral symmetry restoration and color superconductivity [3], (2) the Schrödinger equation for heavy-quarkonia [4], and (2) Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description. References 1. J.I. Kapusta and C. Gale, Finite Temperature Field Theory, Cambridge University Press (2006). 2. K. Yagi, T. Hatsuda and Y. Miake, Quark-Gluon Plasma, Cambridge University Press (2005). 3. D. Blaschke, S. Fredriksson, H. Grigorian, A. M. Oztas and F. Sandin, Phys. Rev. D 72, 065020 (2005). 4. D. Blaschke, O. Kaczmarek, E. Laermann and V. Yudichev, Eur. Phys. J. C 43, 81 (2005). 5. D. Zablocki, D. Blaschke and R. Anglani, AIP Conf. Proc. 1038, 159 (2008). 6. D. Blaschke, G. Burau, Yu. L. Kalinovsky and V. L. Yudichev, Prog. Theor. Phys. Suppl. 149, 182 (2003). 7. R. Rapp, D. Blaschke and P. Crochet, “Charmonium and bottomonium production in heavy-ion collisions,” arXiv:0807.2470. 8. D. Blaschke, T. Klaehn and F. Weber, in: Astronomy and Relativistic Astrophysics, World Scientific, Singaprore (2010), pp. 31-47; [arXiv:0808.1279 [astroph]]. 9. C. Ratti, M. A. Thaler and W. Weise, Phys. Rev. D 73, 014019 (2006) 10. H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi and C. Ratti, Phys. Rev. D 75, 065004 (2007). 11. D. Gomez Dumm, D. B. Blaschke, A. G. Grunfeld and N. N. Scoccola, Phys. Rev. D 78, 114021 (2008). 12. D. Blaschke, M. Buballa, A. E. Radzhabov and M. K. Volkov, Yad. Fiz. 71, 2012 (2008). This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly cited. Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20100701003 EPJ Web of Conferences E FFECTIVE FIELD THEORIES FOR HOT AND DENSE MATTER (I) David Blaschke Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia • Introduction: Many-particle Systems and Quantum Field Theory • Partition function for QCD: Lattice Simulations vs. Resonance Gas • Bound states and Mott effect, Color superconductivity – Heavy Quarkonia - Schrödinger Equation – Chiral quark model - Color superconductivity – Pions, Kaons, D-mesons - Chiral Quark Model • Application 1: J/ψ suppression in Heavy-Ion Collisions • Application 2: Quark Matter in Compact Stars • Summary / Outlook to Lecture II M ANY PARTICLE S YSTEMS & Q UANTUM F IELD T HEORY Elements Bound states System humans, animals couples, groups, parties society molecules, crystals (bio)polymers animals, plants atoms molecules, clusters, crystals solids, liquids, ... ions, electrons atoms plasmas nucleons, mesons nuclei nuclear matter quarks, anti-quarks nucleons, mesons Highly Compressed Matter ⇔ Pauli Principle Partition function: 01003-p.2 quark matter   Z = Tr e−β(H−μiQi) Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) PARTITION Q UANTUM C HROMODYNAMICS (QCD) FUNCTION FOR • Partition function as a Path Integral (imaginary time τ = i t, 0 ≤ τ ≤ β = 1/T ) ⇒ PS I   β    Z[T, V, μ] = D ψ̄DψDA exp − dτ d3x LQCD (ψ, ψ̄, A) 0 V a (A) = ∂μ Aa ν − ∂ν Aaμ + g f abc [Abμ , Acν ] • QCD Lagrangian, non-Abelian gluon eld strength: Fμν 1 a LQCD (ψ, ψ̄, A) = ψ̄[iγ μ(∂μ − igAμ ) − m − γ 0μ]ψ − Fμν (A)F a,μν (A) 4 • Numerical evaluation: Lattice gauge theory simulations (Bielefeld group) 4 SB/T 15 • Phase transition at Tc = 170 MeV 10 /T 4 • Equation of state: ε(T ) = −∂lnZ[T, V, μ]/∂β • Problem: Interpretation ? Lattice QCD (2+1 flavor) Tc=170 MeV +/- 10% 5 ε/T 4 = Karsch et al., PLB 478 (2000) 447 0 0 4 0.5 1 2 1.5 T/Tc 2.5 3 P HASEDIAGRAM ε/T = 3.5 OF π2 30 Nπ ∼ 1 (ideal π2 (NG + 87 NQ ) ∼ 30 pion gas) 15.6 (quarks and gluons) QCD: L ATTICE S IMULATIONS D  ICA MP N 01003-p.3 EPJ Web of Conferences P HASEDIAGRAM OF QCD: L ATTICE S IMULATIONS Lattice QCD Simulations PD A NIC M L ATTICE QCD E O S VS . RESONANCE GAS 4 SB/T Ideal hadron gas mixture ...    p2 + m2i d3 p  gi ε(T ) = 3 2 (2π) exp( p + m2i /T ) + δi i=π,ρ,... 10 /T 4 15 , m=770 MeV + Lattice (2+1 flavor) missing degrees of freedom below and above Tc 5 0 0 0.5 1 2 1.5 T/Tc 3 2.5 3.5 Resonance gas ... Karsch, Redlich, Tawk, Eur.Phys.J. C29, 549 (2003)  ε(T ) = εi(T ) 4 SB/T 10 i=π,ρ,... /T 4 15 Hagedorn gas Lattice (2+1 flavor) 5  + r=M,B β 0 0 0.5 1 2 1.5 T/Tc 2.5 3 3.5 gr  dm ρ(m)   d3 p p2 + m2  (2π)3 exp( p2 + m2 /T ) + δr ρ(m) ∼ m exp(m/TH ) ... Hagedorn mass spektrum too many degrees of freedom above Tc 01003-p.4 Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) εR(T, {μj }) = L ATTICE QCD E O S AND    i=π,K,... εi(T, {μi})+  r=M,B gr dm mr M OTT-H AGEDORN G AS ds ρ(m)A(s, m; T )   p2 + s √ d3 p (2π)3 p2 +s−μr T exp Hagedorn mass spectrum: ρ(m) + δr Spectral function for heavy resonances: TH=1.2 Tc A(s, m; T ) = Ns resonances 10 /T 4 15 Ansatz with Mott effect at T = TH = 180 MeV: Γ(T ) = BΘ(T − TH ) quarks + gluons 5 0 mΓ(T ) (s − m2)2 + m2Γ2(T ) m TH 2.5 6 T TH exp m TH No width below TH : Hagedorn resonance gas Apparent phase transition at Tc ∼ 150 MeV Blaschke & Bugaev, Fizika B13, 491 (2004) 0.5 1 2 T/Tc 1.5 3 2.5 Prog. Part. Nucl. Phys. 53, 197 (2004) 3.5 Blaschke & Yudichev, in preparation Bugaev, Petrov, Zinovjev, arXiv:0812.2189 H ADRONIC C ORRELATIONS Ha d r on ABOVE Tc : L ATTICE QCD () 2.5 ic (a) Co D CA P M T = 0.78Tc 2 r r e l a T = 1.38Tc T = 1.62Tc 1.5 t 1 i o n s 0.5 NI 0 (b) T = 1.87Tc 2 Hadron correlators GH =⇒ spectral densities ρH (ω, T )  ∞ cosh(ω(τ − T /2)) GH (τ, T ) = dωρH (ω, T ) sinh(ω/2T ) 0 Maximum entropy method Karsch et al. PLB 530 (2002) 147 Result: Correlations persist above Tc ! Karsch et al. NPA 715 (2003) T = 2.33Tc 1.5 1 0.5 0 0 5 10 15 20 25 30  [GeV] J/ψ and ηc survive up to T ∼ 1.6Tc Asakawa, Hatsuda; PRL 92 (2004) 012001 01003-p.5 EPJ Web of Conferences H ADRONIC C ORRELATIONS IN THE P HASEDIAGRAM OF QCD OF QCD Ha d r on ic Co PD CA M rr e la t i o n s NI H ADRONIC C ORRELATIONS IN THE A NIC MP D 01003-p.6 P HASEDIAGRAM Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) H EAVY Q UARK P OTENTIAL FROM L ATTICE QCD Color-singlet free energy F1 in quenched QCD Tr[L(0)L†(r)] = exp[−F1(r)/T ] 1 F1(r)/ , V1(r)/ 1/2 Long- and short- range parts 2 F1 (r, T ) = F1,long (r, T ) + V1,short(r)e−(µ(T )r) 1/2 0 F1,long (r, T ) = ′ screened′confinementpot. 4 α(r) , α(r) = runningcoupl. (1) V1,short(r) = − 3 r T=1.013 Tc T=1.151 Tc T=1.500 Tc T=1.684 Tc T=2.999 Tc -1 0 T=0 1 2 1/2 r 3 4 Quarkonium (QQ̄) 1S 1P1 2S Charmonium (cc̄) J/ψ(3097) χc1 (3510) ψ ′ (3686) Bottomonium (bb̄) Υ (9460) χb1 (9892) Υ′ (10023) =⇒ Wong (DM 2, 5); Lombardo (DM 3, 7) Blaschke, Kaczmarek, Laermann, Yudichev, EPJC 43, 81 (2005); [hep-ph/0505053] S CHROEDINGER EQN : BOUND SCATTERING STATES Quarkonia bound states at nite T : 300 1S, charmonium 1S, bottomonium 2S, bottomonium 250 EB [MeV] & 200 [−∇2/mQ + Veff (r, T )]ψ(r, T ) = EB (T )ψ(r, T ) 150 100 Binding energy vanishes EB (TMott) = 0: Mott effect 50 0 1 S(k) 3 1.5 Charmonium 1.01 1.10 1.20 1.24 1.50 1.68 2.21 3.00 T / Tc = 2 1 S(k) 6 Bottomonium 1.01 1.05 1.10 1.15 1.30 1.68 2.21 3.00 T / Tc = 4 2 0 0 2 Scattering states: 2 T / Tc k [GeV] dδS (k, r, T ) mQVeff =− sin(kr + δS (k, r, T )) dr k Levinson theorem: Phase shift at threshold jumps by π when bound state → resonance at T = TMott Blaschke, Kaczmarek, Laermann, Yudichev EPJC 43, 81 (2005); [hep-ph/0505053] 4 01003-p.7 EPJ Web of Conferences P HASEDIAGRAM OF QCD: C HIRAL M ODEL F IELD T HEORIES Chira l Q ua rk Mo de l Fi el d Th eo ry PD CA  M NI C HIRAL M ODEL F IELD T HEORY FOR Q UARK M ATTER • Partition function as a Path Integral (imaginary time τ = i t)    β   dτ d3x[ψ̄(iγ μ∂μ − m − γ 0μ)ψ − Lint] Z[T, V, μ] = D ψ̄Dψ exp − V • Current-current interaction (4-Fermion coupling) Lint = M=π,σ,... GM (ψ̄ΓM ψ)2 + D GD (ψ̄ C ΓD ψ)2 • Bosonization (Hubbard-Stratonovich Transformation) Z[T, V, μ] =  DMM DΔ†D DΔD exp −  |ΔD |2 1  M2 M − + Tr lnS −1 [{MM }, {ΔD }] 4GM 4GD 2 M D • Collective (stochastic) elds: Mesons (MM ) and Diquarks (ΔD ) • Systematic evaluation: Mean elds + Fluctuations – Mean-eld approximation: order parameters for phase transitions (gap equations) – Lowest order uctuations: hadronic correlations (bound & scattering states) – Higher order uctuations: hadron-hadron interactions 01003-p.8 Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) NJL MODEL FOR NEUTRAL 3- FLAVOR Thermodynamic Potential Ω(T, μ) = −T ln Z[T, μ] Ω(T, μ) =  φ2u + φ2d + φ2s |Δud|2 + |Δus|2 + |Δds|2 + −T 8GS 4GD n InverseNambu − GorkovPropagator −1 S (iωn , p) =   QUARK MATTER d3p 1 1 −1 Tr ln S (iωn , p) + Ωe − Ω0. (2π)3 2 T  p) Δ( γμ pμ − M (p) + μγ 0 † μ  Δ (p) γμp − M (p) − μγ 0  p) = iγ5ǫαβγ ǫijk Δkγ g(p) ; Δkγ = 2GD q̄iα iγ5ǫαβγ ǫijk g(q)q C . Δ( jβ Fermion Determinant (Tr ln D = ln det D): lndet[β S −1 (iωn , p)] = 2 18 2 2 a=1 ln{β [ωn  , + λa (p)2]} . Result for the thermodynamic Potential (Meaneld approximation)  18   d3p   φ2 + φ2d + φ2s |Δud|2 + |Δus|2 + |Δds|2 λa + 2T ln 1 + e−λa /T + Ωe − Ω0. + − Ω(T, μ) = u 8GS 4GD (2π)3 a=1 Color and electric charge neutrality constraints: nQ = n8 = n3 = 0, ni = −∂Ω/∂μi = 0, Equations of state: P = −Ω, etc. O RDER PARAMETERS : M ASSES D IQUARK G APS Left: Gap in excitation spectrum (T = 0) Right: ’Gapless’ excitations (T = 60 MeV) Masses (M ) and Diquark gaps (Δ) as a function of the chemical potential at T = 0 600 500 500 400 Ms Mu Md Mu, Md ud us, ds 400 300 E [MeV] , M [MeV] AND ug-dr ub-sr, db-sg ur-dg-sb ub-sr db-sg 300 200 200 100 100 300 350 400 450  [MeV] 500 550 0 0 01003-p.9 200 400 p [MeV] 0 200 400 p [MeV] 600 EPJ Web of Conferences M OTT EFFECT: NJL MODEL PRIMER RPA-type resummation of quark-antiquark scattering in the mesonic channel M, Meson masses [MeV] 600 TMott=186 MeV M M 400 +... = = 1  J M (P ,P; T) denes Meson propagator 200 M DM (P0, P ; T ) ∼ [1 − JM (P0 , P ; T )]−1,  0 0 by the complex polarization function JM → Breit-Wigner type spectral function  50 200 100 150 T [MeV] 250 1 Im DM (P0, P ; T ) π ΓM (T )MM (T ) 1 ∼ 2 (T ))2 + Γ2 (T )M 2 (T ) π (s − MM M M AM (P0 , P ; T ) = 2.5 Meson Masses, Widths [GeV] M M + NJL with IR cutoff 2 1.5 bound state mass resonance mass resonance width K 1 D For T < TMott: Γ → 0, i.e. bound state 2 (T )) AM (P0, P ; T ) = δ(s − MM D* Light meson sector: Blaschke, Burau, Volkov, Yudichev: EPJA 11 (2001) 319 0.5 Mott T 0 0 = 186 MeV 100 200 Charm meson sector: Blaschke, Burau, Kalinovsky, Yudichev, Prog. Theor. Phys. Suppl. 149 (2003) 182 300 T [MeV] P HASEDIAGRAM QCD: H EAVY-I ON C OLLISIONS OF Lattice QCD Simulations D  ICA MP N 01003-p.10 Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) P HASEDIAGRAM OF QCD: L ATTICE VS . H EAVY-I ON C OLLISIONS QGP Signal: Anomalous J/ suppression Lattice QCD A NIC MP J/ Suppression factor Simulations D CERN - SPS 1.4 1.2 1 0.8 pp(d) NA51 pA NA38 SU NA38 Pb Pb 1996 Pb Pb 1998 0.6 0.4 0.2 Ratios 0 0 p /p / / - + -/+ K /K - K /- *0 - *0 p /- K /h K /h - 1 T f.o. 10 -1 = 174 MeV f.o.= 46 MeV STAR PHENIX PHOBOS BRAHMS 10 0.5 1 1.5 2 2.5 3  [GeV/fm ] 3 3.5 Statistical model describes composition of hadron yields in Heavy-Ion Collisions with few freeze-out parameters.  gi  ∞ dp p2 ln[1 ± λi exp(−βεi(p))] ln Z[T, V, {μ}] = ±V 2π 2 0 i λi (T, {μ}) = exp[β(μB Bi + μS Si + μQ Qi )] Braun-Munzinger, Redlich, Stachel, in QGP III (2003) RHIC Brookhaven -2 A SNAPSHOP OF THE S QGP ⇐⇒ The Picture: String-ip (Rearrangement) Pair correlation g(r) 1 1 r NN 2 Horowitz et al. PRD (1985), D.B. et al. PLB (1985), Röpke, Blaschke, Schulz, PRD (1986) Thoma,[hep-ph/0509154] Gelman et al., PRC 74 (2006) • Strong correlations present: hadronic spectral functions above Tc (lattice QCD) • Finite width due to rearrangement collisions (higher order correlations) • Liquid-like pair correlation function (nearest neighbor peak) 01003-p.11 r EPJ Web of Conferences Q UANTUM KINETIC APPROACH TO Tqq Uex τ −1(p) = Γ(p) = Σ>(p) ∓ Σ<(p)    < > > > ′ < < (2π)4δp,p′ ;p1 ,p2 |M|2 G> Σ<(p, ω) = π (p ) GD1 (p1 ) GD2 (p2 ) Uex TqQ p′ TQQ G> h (p) 10 1/2 Mott effect ( ~(TTc) ) Mott Effect ( ~(TTc)) no Mott effect <v> [mb] 1 0.1 p2 = [1 ± fh (p)]Ah(p) and G< h (p) = fh (p)Ah (p)  3 ′  d p τ −1 (p) = ds′ fπ (p′, s′ ) Aπ (s′)vrel σ ∗ (s) (2π)3 Medium effects in spectral functions Ah and σ(s; s1, s2) Ah (s) = 0.001 0.05 0.1 0.15 0.2 1 Γh (T ) Mh (T ) −→ δ(s − Mh2 ) π (s − Mh2 (T ))2 + Γ2h (T )Mh2(T ) resonance ⇐ Mott-effect ⇐ bound state 0.25 T [GeV] Blaschke et al., Heavy Ion Phys. 18 (2003) 49 “A NOMALOUS ” J/ψ Suppression factor p1 In-medium breakup cross section  σ ∗(s) = ds1 ds2 AD1 (s1) AD2 (s2) σ(s; s1, s2) 0.01 J/ BREAKUP Inverse lifetime for Charmonium states TqQ TQQ J/ψ SUPPRESSION IN M OTT-H AGEDORN 1.4 Survival probability for J/ψ 1.2   S(ET )/SN (ET ) = exp − 1 0.4 0.2 0 0 tf dt τ −1 (n(t)) t0 0.8 0.6 GAS Threshold: Mott effect for hadrons pp(d) NA51 pA NA38 SU NA38 Pb Pb 1996 Pb Pb 1998 this work 0.5 Blaschke and Bugaev, Prog. Nucl. Phys. 53 (2004) 197 1 1.5 2 2.5 3  [GeV/fm ] 3 3.5 In progress: full kinetics with gain processes (D-fusion), HIC simulation 01003-p.12 Part.  Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) P HASEDIAGRAM OF DEGENERATE Q UARK M ATTER Chira l Q ua rk Mo de l Fi el d Th eo ry PD CA M  NI P HASEDIAGRAM Chiral OF DEGENERATE Q UARK M ATTER Qu ark Mo del Fi eld PD CA  M NI 01003-p.13 Th eo ry EPJ Web of Conferences Q UARK MATTER IN COMPACT STARS The phases are characterized by 3 gaps: 80 70 NQ g2SC 60 • NQ-2SC: Δud = 0, Δus = Δds = 0, 0≤ χ2SC ≤1; • 2SC: Δud = 0, Δus = Δds = 0; guSC 50 • uSC: Δud = 0, Δus = 0, Δds = 0; 2SC • CFL: Δud = 0, Δds = 0, Δus = 0; 40 Result: 1.0 0.9 20 0.8 0.7 0 • CFL only at high chemical potential, s 10 • Gapless phases only at high T, 175  2SC = 0 MeV 30 M =20 T [MeV] • NQ: Δud = Δus = Δds = 0; gCFL NQ-2SC 400 350 450  [MeV] 500 CFL • At T ≤25-30 MeV: mixed NQ-2SC phase, 550 • Critical point (Tc ,μc)=(48 MeV, 353 MeV), • Strong coupling, η = 1, changes?. Rüster et al: PRD 72 (2005) 034004 Blaschke et al: PRD 72 (2005) 065020 Abuki, Kunihiro: NPA 768 (2006) 118 =⇒ Zhuang (DM 12, 17) Q UARK MATTER IN COMPACT STARS : M ASS -R ADIUS CONSTRAINT Solve TOV Eqn. → Hybrid stars fulll constraint! • Isolated Neutron star RX J1856: M-R constraint from thermal emission 2.5 RX J1856 M [Msun] 2.0 c 1.5 au i sal ty lim it 4U 1636 -536 4U 0614 +09 1.0 • Low-mass X-ray binary 4U 1636: Mass constraint from ISCO obs. NJL330 D = 0.75, V = 0.00 NJL330 D = 1.03, V = 0.25 0.5 DBHF 0 6 8 10 R [km] 12 14 16 Klähn et al: Constraints on the high-density EoS ... PRC 74 (2006); [nucl-th/0602038], [astro-ph/0606524] 01003-p.14 Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) Q UARK MATTER IN COMPACT STARS : C OOLING CONSTRAINT Quark matter in compact stars: color superconducting • Neutrinos carry energy off the star, Cooling evolution (schematic) by 2 6,4 Crab Model IV ǫγ + j=Urca,... ǫjν dT (t) =− i dt i=q,e,γ,... cV Vela 5,8 5,6 1.05 1.13 1.22 (critical) 1.28 1.35 1.45 1.55 1.65 1.75 5,2 5 1.5 2 3 4 5 log10(t[yr]) • Most efcient process: Urca - e- 1 hybrid stars 5,4 Nstar hybrid M [Msol] 3C58 typical stars 6 RX J1856 log10(Ts [K]) 6,2 d 6 10 12 R [km] 0.5 Popov et al: Neutron star cooling constraints ... PRC 74, 025803 (2006); [nucl-th/0512098] u • Exponential suppression by pairing gaps! Δ ∼ 10...100 keV S UMMARY • Mott-Hagedorn model as alternative interpretation of Lattice data • Microscopic formulation of the hadronic Mott effect within a chiral quark model • Mesonic (hadronic) correlations important for T > Tc • Step-like enhancement of threshold processes due to Mott effect • Reaction kinetics for strong correlations in plasmas applicable @ SPS and RHIC • Prospects for LHC: Plasma diagnostics with bottomonium L ECTURE II: NJL MODEL AND ITS RELATIVES • Polyakov-loop Nambu–Jona-Lasinio (NJL) model • Nonlocal NJL models • Schwinger-Dyson Equation approach at nite T, μ • Walecka model - towards a unied model of quark-hadron matter 01003-p.15 EPJ Web of Conferences E FFECTIVE FIELD THEORIES FOR HOT AND DENSE MATTER NJL (II) MODEL AND ITS RELATIVES David Blaschke Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia • NJL Model and its Polyakov-Loop Extension: – Mesonic correlations - Mott Effect – Polyakov-Loop NJL Model • Nonlocal, separable NJL Model – 3D Formfactors, 4D Formfactors and Phase Diagram – Rank-2 Extension - Schwinger-Dyson type Approach • Summary / Outlook to a Unied Quark-Hadron Approach Literature: Hansen et al., Phys. Rev. D75, 065004 (2007); Gomez Dumm et al., Phys. Rev. D73, 114019 (2006); arXiv:0807.1660; Blaschke et al., arXiv:0705.0384; Schmidt et al., Phys. Rev. C50, 435 (1994); Zablocki at al., arXiv:0805.2687 H ADRONIC C ORRELATIONS IN THE D  ICA MP N 01003-p.16 P HASEDIAGRAM OF QCD Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) H ADRONIC C ORRELATIONS P HASEDIAGRAM IN THE OF QCD Ch iral Qu ark Mod el Field Theo ry D  ICA MP N C HIRAL M ODEL F IELD T HEORY FOR Q UARK M ATTER • Partition function as a Path Integral (imaginary time τ = i t)   β    Z[T, V, μ] = D ψ̄Dψ exp − dτ d3x[ψ̄[iγ μ ∂μ − m − γ 0(μ + λ8μ8 + iλ3φ3]ψ − Lint + U (Φ)] V Polyakov loop: Φ = Nc−1 Trc[exp(iβλ3φ3)] Order parameter for deconnement • Current-current interaction (4-Fermion coupling) Lint = M=π,σ,... GM (ψ̄ΓM ψ)2 + D GD (ψ̄ C ΓD ψ)2 • Bosonization (Hubbard-Stratonovich Transformation) ⎧ ⎫  ⎨  M2 ⎬ 2 |Δ | 1 D M − + Tr lnS −1 [{MM }, {ΔD }, Φ] + U (Φ) Z[T, V, μ] = DMM DΔ†D DΔD exp − ⎩ ⎭ 4GM 4GD 2 M,D • Collective quark elds: Mesons (MM ) and Diquarks (ΔD ); Gluon mean eld: Φ • Systematic evaluation: Mean elds + Fluctuations – Mean-eld approximation: order parameters for phase transitions (gap equations) – Lowest order uctuations: hadronic correlations (bound & scattering states) – Higher order uctuations: hadron-hadron interactions 01003-p.17 EPJ Web of Conferences P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (I) SU (Nc ) pure gauge sector: Polyakov line   β  L (x) ≡ P exp i dτ A4 (x, τ ) ; A4 = iA0 = λ3φ3 + λ8φ8 0 Polyakov loop 1 TrL(x) , l(x) = e−βΔFQ (x). Nc ZNc symmetric phase: l(x) = 0 =⇒ ΔFQ → ∞: Connement ! Polyakov loop eld: 1 Φ(x) ≡ l(x) = Trc L(x) Nc Potential for the PL-meaneld Φ(x) =const., which ts quenched QCD lattice thermodynamics    b4  2 U Φ, Φ̄; T b3  3 b2 (T ) Φ̄Φ − =− Φ̄Φ , Φ + Φ̄3 + 4 T 2 6 4 l(x) = T0 T b2 (T ) = a0 + a1 + a2 2 T0 T + a3 3 T0 T . a0 a1 a2 a3 b3 b4 6.75 -1.95 2.625 -7.44 0.75 7.5 P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (II) Temperature dependence of the Polyakov-loop potential U (Φ, Φ̄; T ) 5 4 U(  ) / T 4 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 U(  ) / T 4 5 4 3 2 1 0 -1 -2 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 3 2 1 0 1.5 1.5 1 1 0.5 0.5 -1.5 -1.5 0 -1 -0.5 -0.5 0 0.5 Re  0 -1 -0.5 Im  1 -0.5 0 0.5 -1 Re  -1.5 1.5 -1 1 -1.5 1.5 T = 1.0 GeV> T0 “Color deconnement” T = 0.26 GeV< T0 “Color connement” Critical temperature for pure gauge SUc (3) lattice simulations: T0 = 270 MeV. Hansen et al., Phys.Rev. D75, 065004 (2007) 01003-p.18 Im  Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (III) Lagrangian for Nf = 2, Nc = 3 quark matter, coupled to the gauge sector     LP NJL = q̄(iγ μDμ − m̂ + γ0μ)q + G1 (q̄q)2 + (q̄iγ5τ q)2 − U Φ[A], Φ̄[A]; T , D μ = ∂ μ − iAμ ; Aμ = δ0μ A0 (Polyakov gauge), with A0 = −iA4 > = Diagrammatic Hartree equation: + = −(p/ − m + γ 0(μ − iA4))−1  Dynamical chiral symmetry breaking σ = m − m0 =  0? Solve Gap Equation! (E = p2 + m2) +∞   −1 d3p m − m0 = 2G1T Tr 3 / p − m + γ 0(μ − iA4) (2π) Λ n=−∞  3 d p 2m = 2G1Nf Nc [1 − fΦ+ (E) − fΦ− (E)] 3 Λ (2π) E S0 (p) = = −(p/ − m0 + γ 0(μ − iA4))−1 ; S(p) = Modied quark distribution functions (Φ = Φ̄ = 0: “poor man’s nucleon”: EN = 3E, μN = 3μ)   Φ + 2Φ̄e−β (Ep∓μ) e−β (Ep∓μ) + e−3β (Ep∓μ) 1   fΦ± (E) = −→ f0± (E) = β(EN ∓μN ) −β (Ep ∓μ) −β (Ep ∓μ) −3β (Ep ∓μ) 1 + e 1 + 3 Φ + Φ̄e e +e P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (IV) 1   ΨΨΨΨT0  0.8 0.6 0.4 0.2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 T GeV 1 3 nq/T 0.8 0.6 Grand canonical thermodynamical potential    d3 p σ2 E θ Λ2 − p 2 − 6Nf Ω(T, μ; Φ, m) = 2G (2π)3    d3p  −(E−μ)/T − 2Nf T 3 Trc ln 1 + L e (2π)     + Trc ln 1 + L† e−(E+μ)/T + U Φ, Φ̄, T Appearance of quarks below Tc largely suppressed:     ln det 1 + L e−(E−μ)/T + ln det 1 + L† e−(E+μ)/T     = ln 1 + 3 Φ + Φ̄e−(E−μ)/T e−(E−μ)/T + e−3(E−μ)/T     + ln 1 + 3 Φ̄ + Φe−(E+μ)/T e−(E+μ)/T + e−3(E+μ)/T . Accordance with QCD lattice susceptibilities! Example: 0.4 nq (T, μ) 1 ∂Ω (T, μ) =− 3 , T3 T ∂μ 0.2 0 0 =0.6 Tc 0.5 1 1.5 2 Ratti, Thaler, Weise, PRD 73 (2006) 014019. T/Tc 01003-p.19 EPJ Web of Conferences P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (V) Mesonic currents JPa (x) = q̄(x)iγ5τ a q(x) ... and correlation functions PP 2 Cab (q ) ≡ i  (pion) ; JS (x) = q̄(x)q(x) − q̄(x)q(x) (sigma)   d4xeiq.x 0|T JPa (x)JPb† (0) |0 = C P P (q 2)δab SS 2 Cab (q ) ≡ i  Schwinger-Dyson Equations, T = μ = 0   d4xeiq.x0|T JS (x)JS† (0) |0 C MM (q 2) = ΠMM (q 2) +  ′ ′ ΠMM (q 2)(2G1)C M M (q 2) M′ One-loop polarization functions ′ ΠMM (q 2) ≡  d4p Tr (ΓM S(p + q)ΓM ′ S(q)) 4 Λ (2π) Hartree quark propagator S(p) P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (VI) Example of the pion channel:  m2 − p2 + q 2 /4 d4p ΠP P (q 2) = −4iNcNf = 4iNcNf I1 − 2iNcNf q 2I2(q 2) 4 2 2 2 2 Λ (2π) [(p + q/2) − m ][(p − q/2) − m ] Loop Integrals: I1 =  1 d4p ; 4 2 2 Λ (2π) p − m I2(q 2) =  d4p 1 4 2 2 2 2 Λ (2π) [(p + q) − m ] [p − m ] With pseudoscalar decay constant (fP ) and gap equation for I1 fP2 (q 2) = −4iNcm2I2(q 2) ; I1 = 2 2 2 q SS 2 0 One obtains ΠP P (q 2) = m−m 2G1 m + fP (q ) m2 ; Π (q ) = (m0 = 0), the correlation functions C MM (q 2) = ΠMM (q 2 ) + ΠMM (q 2)(2G1)C MM (q 2) = m − m0 , 8iG1mNcNf m−m0 2G1 m + fP2 (q 2 ) q 2 −4m2 m2 . In the chiral limit ΠMM (q 2) , M = P, S , 1 − 2G1ΠMM (q 2) have poles at q 2 = MP2 = 0 (Pion) and q 2 = MS2 = (2m)2 (Sigma meson) =⇒ Check ! 01003-p.20 Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (VII)  d4 p  d3 p 1 Finite T, μ: p = (p0, p) → (iωn + μ − iA4, p) ; i Λ (2π) 4 → −T Nc Trc n Λ (2π)3  d3p 1 − f (Ep − μ) − f (Ep + μ) I1 = −i (2π)3 2Ep  Λ3 dp 1 f (Ep + μ) + f (Ep − μ) − f (Ep+q + μ) − f (Ep+q − μ) I2(ω, q) = i (2π)3 2Ep2Ep+q ω − Ep+q + Ep  Λ3 1 d p 1 − f (Ep − μ) − f (Ep+q + μ) 1 − +i 3 2Ep2Ep+q ω + Ep+q + Ep ω − Ep+q − Ep Λ (2π) (1) For a meson at rest in the medium (q = 0)    d3p 1 − f (Ep + μ) − f (Ep − μ)   I2 ω, 0 = −i 3 Ep ω 2 − 4Ep2 Λ (2π) which develops an imaginary part ω  ω  ω 2 − 4m2 1  1−f ×Θ(ω 2 −4m2)Θ(4(Λ2+m2)−ω 2) −μ −f +μ 16π 2 2 ω2      with the Pauli-blocking factor: N (ω, μ) = 1 − f ω2 − μ − f ω2 + μ ℑm (−iI2(ω, 0)) = P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (VIII) Spectral function ΠMM (ω + iη, q) . 1 − 2G1ΠMM (ω + iη, q) π 1 2G1ℑm ΠMM (ω + iη) . F MM (ω) = MM 2G1 π (1 − 2G1ℜe Π (ω))2 + (2G1ℑm ΠMM (ω + iη))2 F MM (ω, q) ≡ ℑm C MM (ω + iη, q) = ℑm For ω < 2m(T, μ), ℑm Π = 0: decay channel closed → bound state!  π  π ! ! F MM (ω) = δ 1 − 2G1ℜe ΠMM (ω) = ! ∂ℜe ΠM M ! 2G1 2 4G ! ! 1 The meson mass mM is the solution of 1 − 2G1ℜe ΠMM (mM ) = 0 The decay width (inverse lifetime) is ΓM = 2G1ℑm ΠMM (mM ) 01003-p.21 ∂ω ω=mM δ(ω − mM ) . (2) EPJ Web of Conferences P ION C ORRELATIONS IN THE P HASE D IAGRAM 300 300 250 ) [arb. units] 250 >50 MeV 200 SB 150  ( T [MeV] m =0 5 D = 1.0 4 m 3 2 200 1 0 150 0 200 400 600 800 1000 T=0 T = 200 MeV T = 215 MeV T = 250 MeV 100 =0 100 50 50 D= 1.00 0 0 0 0 2SC 100 200  [MeV] 300 200 400 600 [MeV] 400 800 1000 Zablocki, D.B., Anglani, arXiv:0805.2687 [hep-ph] C OLOR N EUTRALITY IN THE PNJL P HASE D IAGRAM Color neutrality constraint: μ̃ = μ1 + μ8λ8 + iφ3λ3 ; ∂ΩMF /∂μ8 = n8 = nr + ng − 2nb = 0 Gap equations: ∂ΩMF /(∂σ, ∂Δ, ∂φ3) = 0 First order transition Second order transition Smooth crossover 250 Without color neutrality 250 200 150 With color neutrality 100 T=0 T = 50 MeV T = 100 MeV 200 NQM  [ MeV ] 200 T [ MeV ] T [ MeV ] 250 150 SB 100 150 100 EP 50 50 SB - 2SC 2SC 200 400 50 0 0 0 50 100 150 200 250  [ MeV ] 300 350 400 0 0 100 300  [ MeV ] 500 0 100 200 Gomez-Dumm, D.B., Grunfeld, Scoccola, PRD 78, 114021 (2008) [arXiv:0807.1660] 01003-p.22 300  [ MeV ] 400 500 Dense Matter In Heavy Ion Collisions and Astrophysics (DM2008) N ONLOCAL P OLYAKOV L OOP C HIRAL Q UARK M ODEL 3-avor, rank-2, 4D separable susceptibilities: 2-avor, rank-1, 4D separable order parameters: susceptibilities 40 d()/dT dmu,d(T)/dT Nf=2+1 Nf=2 dms(T)/dT 30 20 10 0.18 0.19 0.20 temperature T[GeV] D.B., Buballa, Radzhabov, Volkov, Yad. Fiz. 71 (2008); arXiv:0705.0384 C OMPLEX 0.2 D.B., Horvatic, Klabucar, in prep. MASS POLE FIT TO L ATTICE PROPAGATOR S(p) sum of N pairs of complex conj. mass poles   N  1 zi zi∗ S(p) = + = −i/ pσV (p2) + σS (p2) ∗ Z i/ p + m i/ p + m 2 i i i=1 1.0 0.8 Representation of the scalar amplitude   N  zi∗ m∗i zi mi σS (p2) = + Z2−1 p2 + m2i p2 + m∗i 2 i=1 0.6 0.4 0.2 0.0 0.0 0.19 temperature T[GeV] 1.0 2.0 p (GeV) 3.0 4.0 B HAGWAT, P ICHOWSKY, ROBERTS , TANDY, P HYS . R EV. C68 (2003) 015203 S(p)−1 = i/ pA(p2)+ B(p2) , M (p2) = B(p2)/A(p2) Z(p2) = 1/A(p2) “Derivation” of the equivalent separable model (in Feynman-like gauge) Dμν (p − q) = δμν D(p, q) and D(p, q) = f0(p2) f0(q 2) + f1(p2) p · q f1 (q 2) A(p2) − 1 B(p2) − mc f1(p2) = ; f0(p2) = a b  16 Λ [B(q 2) − mc]σs(q 2 ) 3 q  q2 8 Λ a2 = [A(q 2 ) − 1] σv (q 2 ) 3 q 4 b2 = 01003-p.23 EPJ Web of Conferences N UCLEONS IN THE  N ONLOCAL C HIRAL Q UARK M ODEL |Δ|2 − T r lnS −1 [Δ, Δ†]} 4GD Cahill, Roberts, Prashifka: Aust. J. Phys. 42 (1989) 129, 161 Cahill, ibid, 171; Reinhardt: PLB 244 (1990) 316; Buck, Alkofer, Reinhardt: PLB 286 (1992) 29 Zfluct = DΔ†DΔ exp{− Quark sextett (diquark triplett): bound by exchange forces? sextett condensate? S UMMARY • Compressed nuclear matter: quarkyonic phase (QP)! Coexisting chiral symm. + conf. • Similarities: Mott-Hagedorn picture, string-ip model, conning DSE • Here: PNJL model as microscopic formulation of the QP • Color singlet quark triplets in chiral phase for μ > μc (approx. massless baryons) • Color neutrality by singlet projection = sum over color hexagon • Prospects for CBM & NICA: dilepton enhancement (peak?) from diquark-antidiquark annih. • Preparatory step to compact stars: single avor CSL phase - OK with structure & cooling O UTLOOK : NEXT STEPS ... • Walecka model as limit of PNJL model: chiral transition effects in nuclear EoS • Beyond meaneld: mesons and baryons in the PNJL, higher clusters: sextetting • Astrophysics: Maximum mass & cooling of quarkyonic stars; quarkyonic supernovae 01003-p.24
Keep reading this paper — and 50 million others — with a free Academia account
Used by leading Academics
MARKUS MUELLER
Paul Scherrer Institute
Maksym Strikha
Taras Shevchenko National University of Kyiv
Virginie Boucher
CSIC (Consejo Superior de Investigaciones Científicas-Spanish National Research Council)
Miguel Angel Rubio
Universidad Nacional de Educación a Distancia