Innovative oxygen evolving catalysts, taken from the pool of nanosized, water soluble, molecular metal oxides, the so-called polyoxometalates (POMs), represent an extraordinary opportunity in the field of artificial photosynthesis. These catalysts possess a highly robust, totally inorganic structure, and can provide a unique mimicry of the oxygen evolving center in photosynthetic II enzymes. As a result POMs can effect H₂O oxidation to O₂ with unprecedented efficiency. In particular, the tetra-ruthenium based POM [Ru(IV) ₄(μ-OH)₂(μ-O)₄(H₂O)₄(γ-SiW(10)O(36))₂](10-), Ru₄(POM), displays fast kinetics, electrocatalytic activity powered by carbon nanotubes and exceptionally light-driven performance. A broad perspective is presented herein by addressing the recent progress in the field of metal-oxide nano-clusters as water oxidation catalysts, including colloidal species. Moreover, the shaping of the catalyst environment plays a fundamental role by alleviating the catalyst fatigue and stabilizing competent intermediates, thus responding to what are the formidable thermodynamic and kinetic challenges of water splitting. The design of nano-interfaces with specifically tailored carbon nanostructures and/or polymeric scaffolds opens a vast scenario for tuning electron/proton transfer mechanisms. Therefore innovation is envisaged based on the molecular modification of the hybrid photocatalytic center and of its environment.
Fausto Puntoriero hasn't uploaded this paper.
Let Fausto know you want this paper to be uploaded.