A Rhodobacter sphaeroides bchD (magnesium chelatase) mutant was studied to determine the properties of its photosystem in the absence of bacteriochlorophyll (BChl). Western blots of reaction center H, M, and L (RC H/M/L) proteins from... more
A Rhodobacter sphaeroides bchD (magnesium chelatase) mutant was studied to determine the properties of its photosystem in the absence of bacteriochlorophyll (BChl). Western blots of reaction center H, M, and L (RC H/M/L) proteins from mutant membranes showed levels of 12% RC H, 32% RC L, and 46% RC M relative to those of the wild type. Tricine-SDS-PAGE revealed 52% light-harvesting complex alpha chain and 14% beta chain proteins compared to those of the wild type. Pigment analysis of bchD cells showed the absence of BChl and bacteriopheophytin (BPhe), but zinc bacteriochlorophyll (Zn-BChl) was discovered. Zn-BChl binds to light-harvesting 1 (LH1) and 2 (LH2) complexes in place of BChl in bchD membranes, with a LH2:LH1 ratio resembling that of wild-type cells under BChl-limiting conditions. Furthermore, the RC from the bchD mutant contained Zn-BChl in the special pair and accessory BChl binding sites, as well as carotenoid and quinone, but BPhe was absent. Comparison of the bchD mutant RC absorption spectrum to that of Acidiphilium rubrum, which contains Zn-BChl in the RC, suggests the RC protein environment at L168 contributes to A. rubrum special pair absorption characteristics rather than solely Zn-BChl. We speculate that Zn-BChl is synthesized via the normal BChl biosynthetic pathway, but with ferrochelatase supplying zinc protoporphyrin IX for enzymatic steps following the nonfunctional magnesium chelatase. The absence of BPhe in bchD cells is likely related to Zn2+ stability in the chlorin macrocycle and consequently high resistance of Zn-BChl to pheophytinization (dechelation). Possible agents prevented from dechelating Zn-BChl include the RC itself, a hypothetical dechelatase enzyme, and spontaneous processes.
The cofactor composition and electron-transfer kinetics of the reaction center (RC) from a magnesium chelatase (bchD) mutant of Rhodobacter sphaeroides were characterized. In this RC, the special pair (P) and accessory (B)... more
The cofactor composition and electron-transfer kinetics of the reaction center (RC) from a magnesium chelatase (bchD) mutant of Rhodobacter sphaeroides were characterized. In this RC, the special pair (P) and accessory (B) bacteriochlorophyll (BChl) -binding sites contain Zn-BChl rather than BChl a. Spectroscopic measurements reveal that Zn-BChl also occupies the H sites that are normally occupied by bacteriopheophytin in wild type, and at least 1 of these Zn-BChl molecules is involved in electron transfer in intact Zn-RCs with an efficiency of >95% of the wild-type RC. The absorption spectrum of this Zn-containing RC in the near-infrared region associated with P and B is shifted from 865 to 855 nm and from 802 to 794 nm respectively, compared with wild type. The bands of P and B in the visible region are centered at 600 nm, similar to those of wild type, whereas the H-cofactors have a band at 560 nm, which is a spectral signature of monomeric Zn-BChl in organic solvent. The Zn-BChl H-cofactor spectral differences compared with the P and B positions in the visible region are proposed to be due to a difference in the 5th ligand coordinating the Zn. We suggest that this coordination is a key feature of protein-cofactor interactions, which significantly contributes to the redox midpoint potential of H and the formation of the charge-separated state, and provides a unifying explanation for the properties of the primary acceptor in photosystems I (PS1) and II (PS2).