HERG
1 Follower
Recent papers in HERG
Phycotoxins are marine toxins produced by phytoplankton that can get accumulated in filter feeding shellfish. Human intoxication episodes occur due to contaminated seafood consumption. Okadaic acid (OA) and dynophysistoxins (DTXs) are... more
Phycotoxins are marine toxins produced by phytoplankton that can get accumulated in filter feeding shellfish. Human intoxication episodes occur due to contaminated seafood consumption. Okadaic acid (OA) and dynophysistoxins (DTXs) are phycotoxins responsible for a severe gastrointestinal syndrome called diarrheic shellfish poisoning (DSP). Yessotoxins (YTXs) are marine toxins initially included in the DSP class but currently classified as a separated group. Food safety authorities from several countries have regulated the content of DSPs and YTXs in shellfish to protect human health. In mice, OA and YTX have been associated with ultrastructural heart damage in vivo. Therefore, this study explored the potential of OA, DTX-1 and YTX to cause acute heart toxicity. Cardiotoxicity was evaluated in vitro by measuring hERG (human èter-ago go gene) channel activity and in vivo using electrocardiogram (ECG) recordings and cardiac damage biomarkers. The results demonstrated that these toxins do not exert acute effects on hERG channel activity. Additionally, in vivo experiments showed that these compounds do not alter cardiac biomarkers and ECG in rats OPEN ACCESS Toxins 2015, 7 1031 acutely. Despite the ultrastructural damage to the heart reported for these toxins, no acute alterations of heart function have been detected in vivo, suggesting a functional compensation in the short term.
- by Luis M Botana and +1
- •
- Pharmacology, Pharmacy, HERG, Ecg
Potassium channels encoded by human ether‐à‐go‐go‐related gene (hERG) mediate the cardiac rapid delayed rectifier K+ current (IKr), which participates in ventricular repolarization and has a protective role against unwanted premature... more
Potassium channels encoded by human ether‐à‐go‐go‐related gene (hERG) mediate the cardiac rapid delayed rectifier K+ current (IKr), which participates in ventricular repolarization and has a protective role against unwanted premature stimuli late in repolarization and early in diastole. Ionic current carried by hERG channels (IhERG) is known to exhibit a paradoxical dependence on external potassium concentration ([K+]e), but effects of acute [K+]e changes on the response of IhERG to premature stimulation have not been characterized. Whole‐cell patch‐clamp measurements of hERG current were made at 37°C from hERG channels expressed in HEK293 cells. Under conventional voltage‐clamp, both wild‐type (WT) and S624A pore‐mutant IhERG during depolarization to +20 mV and subsequent repolarization to −40 mV were decreased when superfusate [K+]e was decreased from 4 to 1 mmol/L. When [K+]e was increased from 4 to 10 mmol/L, pulse current was increased and tail IhERG was decreased. Increasing [K+]e produced a +10 mV shift in voltage‐dependent inactivation of WT IhERG and slowed inactivation time course, while lowering [K+]e from 4 to 1 mmol/L produced little change in inactivation voltage dependence, but accelerated inactivation time course. Under action potential (AP) voltage‐clamp, lowering [K+]e reduced the amplitude of IhERG during the AP and suppressed the maximal IhERG response to premature stimuli. Raising [K+]e increased IhERG early during the AP and augmented the IhERG response to premature stimuli. Our results are suggestive that during hypokalemia not only is the contribution of IKr to ventricular repolarization reduced but its ability to protect against unwanted premature stimuli also becomes impaired.
Phycotoxins are marine toxins produced by phytoplankton that can get accumulated in filter feeding shellfish. Human intoxication episodes occur due to contaminated seafood consumption. Okadaic acid (OA) and dynophysistoxins (DTXs) are... more
Phycotoxins are marine toxins produced by phytoplankton that can get accumulated in filter feeding shellfish. Human intoxication episodes occur due to contaminated seafood consumption. Okadaic acid (OA) and dynophysistoxins (DTXs) are phycotoxins responsible for a severe gastrointestinal syndrome called diarrheic shellfish poisoning (DSP). Yessotoxins (YTXs) are marine toxins initially included in the DSP class but currently classified as a separated group. Food safety authorities from several countries have regulated the content of DSPs and YTXs in shellfish to protect human health. In mice, OA and YTX have been associated with ultrastructural heart damage in vivo. Therefore, this study explored the potential of OA, DTX-1 and YTX to cause acute heart toxicity. Cardiotoxicity was evaluated in vitro by measuring hERG (human èter-ago go gene) channel activity and in vivo using electrocardiogram (ECG) recordings and cardiac damage biomarkers. The results demonstrated that these toxins do not exert acute effects on hERG channel activity. Additionally, in vivo experiments showed that these compounds do not alter cardiac biomarkers and ECG in rats OPEN ACCESS Toxins 2015, 7 1031 acutely. Despite the ultrastructural damage to the heart reported for these toxins, no acute alterations of heart function have been detected in vivo, suggesting a functional compensation in the short term.
- by Luis M Botana
- •
- Pharmacology, Pharmacy, HERG, Ecg