Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
    • by 
    •   29  
      EngineeringMaterials EngineeringChemical EngineeringInorganic Chemistry
Pure tin dioxide (SnO2) and Al doped SnO2 nanoparticles are prepared by co-precipitation method. Studies on structural and morphological properties are done by X-ray diffraction, field emission scanning electron microscopy and electron... more
    • by 
    •   3  
      II-VI wide bandgap semiconductorsSemiconducting NanocrystalsBinary Semiconductors
In this work we propose a simple empirical rule for the absorption coefficient of mercury cadmium telluride (MCT), valid both in the non-degenerate and in the degenerate case. The rule takes into account the Urbach band tailing and... more
    • by 
    •   5  
      II-VI wide bandgap semiconductorsElectromagnetic WavesCadmiumPropagation of Electromagnetic Waves
In this paper, we report room-temperature fer-romagnetism in chemically synthesized Zn 1-x Co x S (0 B x B 0.10) diluted magnetic semiconductor nanopar-ticles of *3–5 nm. The incorporation of Co 2? ion for Zn 2? ions in ZnS lattice and... more
    • by 
    •   5  
      Dilute Magnetic SemiconductorsII-VI wide bandgap semiconductorsMagnetism and Magnetic MaterialsAntiferromagnetic Interactions
    • by 
    •   13  
      Solid State PhysicsNanomaterials CharacterizationThin Films and CoatingsSemiconductors
We report on the polarity control of ZnO grown by plasma assisted molecular beam epitaxy on Ga polar (0001) GaN/sapphire templates simply via the oxygen-to-Zn (VI/II) ratio during the growth of a thin nucleation layer at 300 °C. Following... more
    • by  and +2
    •   5  
      PhysicsSemiconductor PhysicsElectronicsII-VI wide bandgap semiconductors
    • by 
    •   11  
      Thin Films and CoatingsElectron Beam TechnologiesII-VI wide bandgap semiconductorsThin film (Physics)
In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of e 0 , e 0 , tand, electric modulus (M 0 and M 00) and r ac of PrBaCoO nanofiber capacitor... more
    • by 
    •   27  
      Electrical EngineeringIII-V SemiconductorsGroup IV semiconductorsOrganic Semiconductors
Group IV (Si, Ge, Sn) alloys are promising materials for future optoelectronic devices. Their compatibility with Si technology would allow us to engineer novel growth techniques and bandgap engineering methods to obtain direct band gap... more
    • by 
    •   26  
      Quantum ComputingPhysicsQuantum PhysicsNanoelectronics
    • by 
    •   6  
      SemiconductorsII-VI wide bandgap semiconductorsElectrodepositionCIGS solar cells
    • by 
    •   23  
      EngineeringMaterials EngineeringInorganic ChemistryTechnology
    • by 
    •   12  
      Materials EngineeringThin Films and CoatingsElectron Beam TechnologiesII-VI wide bandgap semiconductors
We demonstrate high performance chemical bath deposited CdS thin-film transistors (TFTs) using atomic layer deposited ZrO2 based high-k gate dielectric material. Our unique way of isolation of the CdS-based TFTs devices yielded... more
    • by 
    •   3  
      II-VI wide bandgap semiconductorsHigh K DielectricsThin Film Transistors
    • by 
    •   3  
      Solid State PhysicsII-VI wide bandgap semiconductorsNanoCrystalline Solid Thin Films
An intermolecular charge and electron transfer processes in photo luminescent ZnS- L-Cysteine: core-shell Nanoparticles (NPs) extend highly sensitive and variable valence at the core (ZnS)-shell (L-Cysteine) interface primarily due to an... more
    • by  and +1
    •   3  
      II-VI wide bandgap semiconductorsOptoelectronicsCore/shell and Hollow Nanoparticles Synthesis
    • by  and +1
    •   7  
      NanophotonicsNanomaterialsII-VI wide bandgap semiconductorsNanotechnology
Phase change of cubic ZnS to hexagonal ZnO via heat treatment.Band gap was found to decrease with increasing calcinations temperature.ZnO samples have higher magnetic moment than ZnS.Blocking Temperature of the samples is well above room... more
    • by 
    •   4  
      Crystal GrowthDilute Magnetic SemiconductorsII-VI wide bandgap semiconductorsMagnetism and Magnetic Materials
    • by 
    •   24  
      EngineeringMaterials EngineeringChemical EngineeringInorganic Chemistry
    • by 
    •   3  
      Solid State PhysicsII-VI wide bandgap semiconductorsNanoCrystalline Solid Thin Films
The electronic band structure and optical gain of GaN x Bi y As 1−x−y /GaAs pyramidal quantum dots (QDs) are investigated using the 16-band k·p model with constant strain. The optical gain is calculated taking both homogeneous and... more
    • by 
    •   11  
      Quantum OpticsPhotonicsII-VI wide bandgap semiconductorsPhotoluminescence
    • by 
    •   3  
      Solid State PhysicsII-VI wide bandgap semiconductorsNanoCrystalline Solid Thin Films
The work presents an approximate expression for refractive index of mercury cadmium telluride (Hg1-xCdxTe) applicable to both intrinsic and degenerate material. The relation is applicable for cadmium mole fractions x = 0.165-1 at 300 K... more
    • by 
    •   9  
      II-VI wide bandgap semiconductorsTunable photonic bandgapII-VI Nano and Bulk MaterialsII - VI nanostructures
    • by 
    •   3  
      ChemistryCrystal GrowthII-VI wide bandgap semiconductors