With the prevalence of publicly available source code repositories to train deep neural network models, neural program models can do well in source code analysis tasks such as predicting method names in given programs that cannot be... more
With the prevalence of publicly available source code repositories to train deep neural network models, neural program models can do well in source code analysis tasks such as predicting method names in given programs that cannot be easily done by traditional program analysis techniques. Although such neural program models have been tested on various existing datasets, the extent to which they generalize to unforeseen source code is largely unknown. Since it is very challenging to test neural program models on all unforeseen programs, in this paper, we propose to evaluate the generalizability of neural program models with respect to semantic-preserving transformations: a generalizable neural program model should perform equally well on programs that are of the same semantics but of different lexical appearances and syntactical structures. We compare the results of various neural program models for the method name prediction task on programs before and after automated semantic-preserving transformations. We use three Java datasets of different sizes and three state-of-the-art neural network models for code, namely code2vec, code2seq, and GGNN, to build nine such neural program models for evaluation. Our results show that even with small semantically preserving changes to the programs, these neural program models often fail to generalize their performance. Our results also suggest that neural program models based on data and control dependencies in programs generalize better than neural program models based only on abstract syntax trees. On the positive side, we observe that as the size of the training dataset grows and diversifies the generalizability of correct predictions produced by the neural program models can be improved too. Our results on the generalizability of neural program models provide insights to measure their limitations and provide a stepping stone for their improvement.
Source code representations are key in applying machine learning techniques for processing and analyzing programs. A popular approach in representing source code is neural source code embeddings that represents programs with... more
Source code representations are key in applying machine learning techniques for processing and analyzing programs. A popular approach in representing source code is neural source code embeddings that represents programs with high-dimensional vectors computed by training deep neural networks on a large volume of programs. Although successful, there is little known about the contents of these vectors and their characteristics. In this paper, we present our preliminary results towards better understanding the contents of code2vec neural source code embeddings. In particular, in a small case study, we use the code2vec embeddings to create binary SVM classifiers and compare their performance with the handcrafted features. Our results suggest that the handcrafted features can perform very close to the highly-dimensional code2vec embeddings, and the information gains are more evenly distributed in the code2vec embeddings compared to the handcrafted features. We also find that the code2vec embeddings are more resilient to the removal of dimensions with low information gains than the handcrafted features. We hope our results serve a stepping stone toward principled analysis and evaluation of these code representations.
A wide range of code intelligence (CI) tools, powered by deep neural networks, have been developed recently to improve programming productivity and perform program analysis. To reliably use such tools, developers often need to reason... more
A wide range of code intelligence (CI) tools, powered by deep neural networks, have been developed recently to improve programming productivity and perform program analysis. To reliably use such tools, developers often need to reason about the behavior of the underlying models and the factors that affect them. This is especially challenging for tools backed by deep neural networks. Various methods have tried to reduce this opacity in the vein of "transparent/interpretable-AI". However, these approaches are often specific to a particular set of network architectures, even requiring access to the network's parameters. This makes them difficult to use for the average programmer, which hinders the reliable adoption of neural CI systems. In this paper, we propose a simple, model-agnostic approach to identify critical input features for models in CI systems, by drawing on software debugging research, specifically delta debugging. Our approach, SIVAND, uses simplification techniques that reduce the size of input programs of a CI model while preserving the predictions of the model. We show that this approach yields remarkably small outputs and is broadly applicable across many model architectures and problem domains. We find that the models in our experiments often rely heavily on just a few syntactic features in input programs. We believe that SIVAND's extracted features may help understand neural CI systems' predictions and learned behavior.