Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
    • by 
    •   3  
      MathematicsPure MathematicsInfinitesimal
    • by 
    •   9  
      MathematicsComputer SciencePure MathematicsGenus
    • by 
    •   3  
      MathematicsAlgebraic GeometryPicard group
    • by 
    •   4  
      MathematicsPure MathematicsInfinityBracket
We prove that chromatic graph homology for commutative dg algebras, due to Helme-Guizon and Rong, can be extended to brace algebras, at least when the graph is a planar tree. Examples of brace algebras include the cochain algebra of a... more
    • by 
This is a rough draft of notes taken while reading the book "Sheaves in Geometry and Logic"[MLM94]. Here we record some examples and additional material or changes of notation that helped us understand the material, and we think someone... more
    • by  and +1
    •   2  
      Category TheorySheaf Theory
DEFORMATIONS OF G2-STRUCTURES, STRING DUALITIES AND FLAT HIGGS BUNDLES Rodrigo de Menezes Barbosa Tony Pantev, Advisor We study M-theory compactifications on G2-orbifolds and their resolutions given by total spaces of coassociative... more
    • by 
    •   10  
      MathematicsPhysicsQuantum PhysicsMirror Symmetry
In this talk, we explain how to use the lattice theory and computer in the study of K3 surfaces.
    • by 
The goal of this article is to consider the role played by finite‐order elements in the mapping class groups and special loci on moduli spaces, within the framework of Grothendieck–Teichmüller theory, and in particularly in the genus zero... more
    • by 
    •   7  
      MathematicsPure MathematicsGenusModuli Spaces
    • by 
    •   6  
      MathematicsEconometricsStatisticsPrediction
    • by 
    •   6  
      MathematicsEconometricsStatisticsPrediction
    • by 
    •   7  
      MathematicsMathematical PhysicsPhysicsNuclear Physics
The connection between the partial quotients of the regular continued fraction and the number of left and right cuts of the cutting sequence of a geodesic across the triangles of the Farey tessellation has been established by Series. To... more
    • by 
    •   4  
      Continued FractionsMobius TransformationsIsometryHyperbolic space
    • by 
    •   7  
      MathematicsPure MathematicsRepresentation TheoryBricks
    • by 
    •   16  
      MathematicsPure MathematicsPhysical sciencesReduction
    • by 
    •   6  
      Mathematical PhysicsPhysicsMathematical SciencesCurvature
We study, from the point of view of abelian and Kummer surfaces and their moduli, the special quintic threefold known as Nieto's quintic. It is, in some ways, analogous to the Segre cubic and the Burkhardt quartic and can be... more
    • by 
    •   3  
      MathematicsApplied MathematicsPure Mathematics
Multi-environmental yield trial is very vital in assessing newly developed rice lines for its adaptability and stability across environments especially prior to release of the newly developed variety for commercial cultivation. The growth... more
    • by 
    •   6  
      AgronomyBiologyHeritabilityGenotype
    • by 
    •   4  
      MathematicsCombinatoricsTorusfixed point
    • by 
    •   3  
      PhysicsSupersymmetryQcd
    • by 
    •   4  
      MathematicsPhilosophy of PropertyPure MathematicsHOMOTOPY
    • by 
    •   10  
      MathematicsAlgebraic GeometryPure MathematicsQuantum Algebra
We show how the quantum trace map of Bonahon and Wong can be constructed in a natural way using the skein algebra of Muller, which is an extension of the Kauffman bracket skein algebra of surfaces. We also show that the quantum... more
    • by 
    •   5  
      MathematicsPure MathematicsQuantumM M
    • by 
    •   7  
      MathematicsGeneral TopologyQuantum Field TheoryString theory (Physics)
We are interested in the first prolongational limit set of the boundary of parallelizable regions of a given flow of the plane which has no fixed points. We prove that for every point from the boundary of a maximal parallelizable region,... more
    • by 
    •   4  
      MathematicsPure MathematicsLimit (Mathematics)Plane Geometry
    • by 
    •   8  
      MathematicsApplied MathematicsDynamical SystemsPure Mathematics
    • by 
    •   7  
      MathematicsPhysicsPure MathematicsLie Theory
    • by 
    •   4  
      MathematicsPure MathematicsSymplectic geometryHOMOTOPY
    • by 
    •   4  
      Mathematical PhysicsEinsteinDirac operatorClifford analysis
    • by 
This paper investigates the kinematic motions of space-like and time-like curves specified by acceleration fields in Minkowski space ℝ2,1. Through the motion, the relationship between the acceleration fields and velocity fields is... more
    • by 
    • by 
    •   6  
      MathematicsPure MathematicsCohomologyHiggs boson
    • by 
    •   6  
      MathematicsPure MathematicsHiggs bosonModuli Spaces
    • by 
    •   4  
      MathematicsPure MathematicsHiggs bosonSpringer Ebooks
    • by 
    •   5  
      MathematicsCombinatoricsIdentifiabilityCounterexample
    • by 
    • Mathematics
    • by 
    •   7  
      MathematicsMathematical PhysicsPhysicsSymplectic geometry
    • by 
    •   10  
      Computer ScienceArtificial IntelligenceNeural NetworkOptical Character Recognition
    • by 
    •   3  
      Pure MathematicsString theory (Physics)Modular Design
    • by 
    •   3  
      MathematicsPure MathematicsHOMOTOPY
We make calculations in graph homology which further understanding of the topology of spaces of string links, in particular calculating the Euler characteristics of finite-dimensional summands in their homology and homotopy. In doing so,... more
    • by 
    •   3  
      MathematicsHOMOTOPYModular Design
    • by 
    •   4  
      MathematicsPure MathematicsFormalitymodulo
    • by 
    •   7  
      MathematicsAlgebraic GeometryPure MathematicsPower Series
    • by 
    •   3  
      MathematicsPure MathematicsModuli Spaces
    • by 
    •   5  
      MathematicsAlgebraic Number TheoryPure MathematicsModuli Spaces
    • by 
    •   4  
      MathematicsPure MathematicsHyperelliptic CurveDifferential Galois Theory
    • by 
    •   3  
      MathematicsPure MathematicsMathematical Sciences
We construct stable sheaves over K3 fibrations using a relative Fourier-Mukai transform which describes the sheaves in terms of spectral data similar to the construction for elliptic fibrations. On K3 fibered Calabi–Yau threefolds we show... more
    • by 
    •   10  
      MathematicsMathematical PhysicsAlgebraic GeometryPhysics
    • by 
    •   6  
      MathematicsPhysicsHigh Energy PhysicsMathematical Sciences
    • by 
    •   3  
      MathematicsPure Mathematicsquotient