En este trabajo se ha comparado la organización de los lóbulos antenales (LAs) y su representación topográfica en los cuerpos fungiformes (CFs) en soldados de dos especies de hormigas, Atta mexicana y Camponotus ocreatus. La comparación... more
En este trabajo se ha comparado la organización de los lóbulos antenales (LAs) y su representación topográfica en los cuerpos fungiformes (CFs) en soldados de dos especies de hormigas, Atta mexicana y Camponotus ocreatus. La comparación morfológica sugiere que los LAs de A. mexicana podrían ser más especializados que los de C. ocreatus a expensas de capacidades más generales. En ambas especies, el LA está organizado en seis grupos de glomérulos, cada uno inervado por su propio tracto. La inervación de las neuronas de proyección (NP), las cuales conectan los LAs con los CFs a través de los tractos antenoprotocerebrales (TAP), divide el LA en dos regiones, anterior y posterior. Los cálices de los CFs tienen varias capas que reciben información olfativa segregada: NP que inervan los grupos anteriores de glomérulos envían axones a través del TAP-lateral hacia el cuerno lateral (CL) y después hacia la capa interna del cáliz, mientras que las NP que inervan los grupos posteriores de glomérulos envían axones a través del TAP-medial a la capa externa del cáliz y después al CL. Estos resultados muestran que la organización del LA está representada topográficamente en los CFs formando un mapa odotópico. Las dos vías que conectan los LAs con los CFs podrían representar dos canales para el procesamiento de diferentes clases de olores o diferentes propiedades de los estímulos olfativos. Los resultados neuroanatómicos sugieren una organización funcional conservada en los himenópteros sociales.
The autonomous sensory meridian response (ASMR) is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audiovisual , stimuli. The current study used an online... more
The autonomous sensory meridian response (ASMR) is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audiovisual , stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as timing and trigger load, atmosphere, and characteristics of ASMR content, ideal spatial distance from various types of stimuli, visual characteristics, context and use of ASMR triggers, and audio preferences are explored. Lower-pitched, complex sounds were found to be especially effective triggers, as were slow-paced, detail-focused videos. Conversely, background music inhibited the sensation for many respondents. These results will help in designing media for ASMR induction.
This paper proposes a Context Aware Agent based Military Sensor Network (CAMSN) to form an improved Infrastructure for multi-sensor image fusion. It considers contexts driven by a node and sink. The contexts such as general and critical... more
This paper proposes a Context Aware Agent based Military Sensor Network (CAMSN) to form an improved Infrastructure for multi-sensor image fusion. It considers contexts driven by a node and sink. The contexts such as general and critical object detection are node driven where as sensing time (such as day or night) is sink driven. The agencies used in the scheme are categorized as node and sink agency. Each agency employs a set of static and mobile
agents to perform dedicated tasks. Node agency performs context sensing and context interpretation based on the sensed image and sensing time. Node agency comprises of node manager agent, context agent and node blackboard (NBB). Context agent gathers the context from the target and updates the NBB, Node manager agent interprets the context and passes the context information to sink node by using flooding mechanism. Sink agency mainly comprises of
sink manager agent, fusing agent, and sink black board. A context at the sensor node triggers the fusion process at the sink. Based on the context, sink manager agent triggers the fusing agent. Fusing agent roams around the network, visits
active sensor node, fuses the relevant images and sends the fused image to sink. The fusing agent uses wavelet transform for fusion. The scheme is simulated for testing its operation effectiveness in terms of fusion time, mean
square error, throughput, dropping rate, bandwidth requirement, node battery usage and agent overhead.
Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning... more
Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for ...
The aim of this study was to assess the impact of a wind farm on individuals by means of an audio-visual methodology that tried to simulate biologically plausible individual-environment interactions. To disentangle the effects of auditory... more
The aim of this study was to assess the impact of a wind farm on individuals by means of an audio-visual methodology that tried to simulate biologically plausible individual-environment interactions. To disentangle the effects of auditory and visual components on cognitive performances and subjective evaluations, unimodal (Audio or Video) and bimodal (Audio + Video) approaches were compared. Participants were assigned to three experimental conditions that reproduced a wind farm by means of an immersive virtual reality system: bimodal condition, reproducing scenarios with both acoustic and visual stimuli; unimodal visual condition, with only visual stimuli; unimodal auditory condition, with only auditory stimuli. While immersed in the virtual scenarios, participants performed tasks assessing verbal fluency, short-term verbal memory, backward counting, and distance estimations (egocentric: how far is the turbine from you?; allocentric: how far is the turbine from the target?). Afterwards, participants reported their degree of visual and noise annoyance. The results revealed that the presence of a visual scenario as compared to the only availability of auditory stimuli may exert a negative effect on resource-demanding cognitive tasks but a positive effect on perceived noise annoyance. This supports the idea that humans perceive the environment holistically and that auditory and visual features are processed in close interaction.