The sulfuric acid leaching of zinc plant residues was studied in an attempt to find a suitable hydrometallurgical method for zinc recovery. The parameters evaluated consist of reaction time, Solid-to-liquid-ratio, reaction temperature,... more
The sulfuric acid leaching of zinc plant residues was studied in an attempt to find a suitable hydrometallurgical method for zinc recovery. The parameters evaluated consist of reaction time, Solid-to-liquid-ratio, reaction temperature, agita- tion rate and pH. The results of kinetic analysis of the leaching data under various experimental conditions indicated that there is a reaction controlled by the solution transport of protons through the porous product layer with activation energy of about 1 kJ/mol for different constant solid to liquid ratios. Based on the shrinking core model (SCM). On the other hand, activation energy was obtained from a model-free method using isothermal measurements. Values for activation energy were calculated as a result of the conversion function with an average of 2.9 kJ/mol. This value is close to that determined previously, using shrinking core model (SCM).
The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the... more
The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential (ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidation-reduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operational-pattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment.
The application of D2EHPA in zinc solvent extraction has extensive background. To utilize more effectively, response surface methodology was used to optimize the concentration condition of zinc pregnant solution (ZPL) extracted by D2EHPA.... more
The application of D2EHPA in zinc solvent extraction has extensive background. To utilize more effectively, response surface methodology was used to optimize the concentration condition of zinc pregnant solution (ZPL) extracted by D2EHPA. In the current research, zinc, iron and manganese extraction along with separation factor of zinc-iron (Sf (Zn-Fe)) and zinc-manganese (Sf (Zn-Mn)) were considered as the response values. The optimal ZPL conditions extracted with 30% D2EHPA as the extraction solvent were as follows: Zn 21.96 g/L, Fe 382.57 ppm, Mn 1 g/L, Sf (Zn-Fe) 8.26 and Sf (Zn-Mn) 1529.82. In addition, it was found that the iron and manganese concentration were the most effective factors affecting the zinc and manganese extraction, respectively.