El presente artículo expone el diseño de una arquitectura de red para reconocimiento de patrones orientada a la clasificación automática de dos tipos de peces: mojarra y tilapia. Se emplea una arquitectura basada en... more
El presente artículo expone el diseño de una arquitectura de red para reconocimiento de patrones orientada a la clasificación automática de dos tipos de peces: mojarra y tilapia. Se emplea una arquitectura basada en aprendizaje profundo mediante una red neuronal convolucional (RNC) para la cual se determina la base de datos a emplear y los diferentes hiperparámetros que la componen. Se logra obtener, mediante análisis por matriz de confusión, un desempeño del 100% de la red bajo las condiciones controladas el sistema de clasificación, es decir: color de banda transportadora uniforme y uso de luz día.
This study proposes a novel information visualization approach developed and deployed in the state of Andorra. We present a framework to analyze and represent the flow of people through a multi-level interactive and tangible agent-based... more
This study proposes a novel information visualization approach developed and deployed in the state of Andorra. We present a framework to analyze and represent the flow of people through a multi-level interactive and tangible agent-based visualization. The presented framework, developed to understand Andorra visitor behavior, is embedded in the MIT CityScope framework used for civic engagement, urban development, and decision making.
En el presente artículo se expone el entrenamiento de una Red Neuronal Convolucional (RNC) para discriminación de herramientas de uso común en tareas de mecánica, electricidad, carpintería y similares. Para el caso, se toman como... more
En el presente artículo se expone el entrenamiento de una Red Neuronal Convolucional (RNC) para discriminación de herramientas de uso común en tareas de mecánica, electricidad, carpintería y similares. Para el caso, se toman como objetivos de entrenamiento pinzas, destornilladores, tijeras y alicates, los cuales puedan ser identificados por la red, y permite dotarle a un brazo robótico la facultad de identificar una herramienta deseada - de entre las anteriores - para su posible entrega a un usuario. La arquitectura neuro convolucional empleada para la red presenta un porcentaje de acierto del 96% en la identificación de las herramientas entrenadas.
En el presente artículo se expone el entrenamiento de una Red Neuronal Convolucional (RNC) para discriminación de herramientas de uso común en tareas de mecánica, electricidad, carpintería y similares. Para el caso, se toman como... more
En el presente artículo se expone el entrenamiento de una Red Neuronal Convolucional (RNC) para discriminación de herramientas de uso común en tareas de mecánica, electricidad, carpintería y similares. Para el caso, se toman como objetivos de entrenamiento pinzas, destornilladores, tijeras y alicates, los cuales puedan ser identificados por la red, y permite dotarle a un brazo robótico la facultad de identificar una herramienta deseada - de entre las anteriores - para su posible entrega a un usuario. La arquitectura neuro convolucional empleada para la red presenta un porcentaje de acierto del 96% en la identificación de las herramientas entrenadas.
En el presente artículo se expone el entrenamiento de una Red Neuronal Convolucional (RNC) para discriminación de herramientas de uso común en tareas de mecánica, electricidad, carpintería y similares. Para el caso, se toman como... more
En el presente artículo se expone el entrenamiento de una Red Neuronal Convolucional (RNC) para discriminación de herramientas de uso común en tareas de mecánica, electricidad, carpintería y similares. Para el caso, se toman como objetivos de entrenamiento pinzas, destornilladores, tijeras y alicates, los cuales puedan ser identificados por la red, y permite dotarle a un brazo robótico la facultad de identificar una herramienta deseada–de entre las anteriores–para su posible entrega a un usuario. La arquitectura neuro convolucional empleada para la red presenta un porcentaje de acierto del 96% en la identificación de las herramientas entrenadas.