Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Many works related learning from examples to regularization techniques for inverse problems, emphasizing the strong algorithmic and conceptual analogy of certain learning algorithms with regularization algorithms. In particular it is well... more
    • by 
    •   16  
      MathematicsComputer ScienceMachine LearningSupport Vector Machines
    • by 
    •   10  
      Compressed SensingTarget TrackingInformation FusionVisual tracking
This study describes and evaluates twoessay-based discourse analysis systems thatidentify thesis and conclusion statements fromstudent essays written on six different essaytopics. Essays used to train and evaluate thesystems were... more
    • by 
    •   33  
      Discourse AnalysisCognitive ScienceAlgorithmsArtificial Intelligence
    • by 
    •   11  
      Earth SciencesGeochemistryPhysical sciencesDigital Archive
    • by 
    •   14  
      Signal ProcessingCompressed SensingConvex OptimizationSparse Signal Recovery
    • by  and +1
    •   19  
      GeneticsGeophysicsScience CommunicationGenetic Algorithm
    • by  and +1
    •   10  
      AlgorithmsPredictionSingle Nucleotide Polymorphisms (SNPs)Humans
    • by 
    •   54  
      AlgorithmsBiomedical EngineeringOptical TomographyMedical Physics
    • by  and +1
    •   24  
      AlgorithmsStatistical AnalysisSupport Vector MachinesGene expression
    • by 
    •   12  
      Computer GraphicsIterative MethodsTomographyImage Reconstruction
    • by 
    •   5  
      Blind Source SeparationNon-negative matrix factorizationPoint of ViewRegularized least squares
This paper presents a machine learning approach for identification of Bengali multiword expressions (MWE) which are bigram nominal compounds. Our proposed approach has two steps: (1) candidate extraction using chunk information and... more
    • by 
    •   25  
      Cognitive ScienceAlgorithmsArtificial IntelligenceMachine Learning
In this paper we present a receding horizon estimation method for linear time invariant systems, subject to unknown inputs. The proposed approach is based on the idea of asymptotically decoupling the state estimation problem from the... more
    • by 
    •   4  
      Unknown Input ObserverReceding Horizon EstimationFault EstimationRegularized least squares
    • by 
    •   9  
      Data DependenceDecision ProblemReproducing Kernel Hilbert SpaceModel Complexity
    • by 
    •   8  
      SemanticsMultimediaMultimedia information retrievalMultimedia Retrieval
    • by 
    •   13  
      GeophysicsImage ProcessingInverse ScatteringNumerical Simulation
    • by 
    •   27  
      AlgorithmsBiomedical EngineeringTime SeriesRisk assessment
    • by 
    •   20  
      AlgorithmsBiomedical EngineeringHeart FailureHumans
    • by 
    •   12  
      Signal ProcessingDimension ReductionSupport Vector RegressionData Model
    • by 
    •   20  
      Cognitive ScienceElectron MicroscopyInverse ProblemsTomography
    • by 
    •   8  
      Applied MathematicsBITNumerical Analysis and Computational MathematicsNumerical Stability
    • by 
    •   7  
      EngineeringSupport Vector MachinesSupport Vector RegressionSupport vector machine
This paper presents techniques for retrieving photos from personal memories collections using generic concepts that the users specify. It is part of a larger project for capturing, storing, and retrieving personal memories in different... more
    • by 
    •   8  
      SemanticsMultimediaMultimedia information retrievalMultimedia Retrieval
    • by 
    •   10  
      Machine LearningSupport Vector MachinesStatistical LearningTikhonov Regularization
    • by 
    •   9  
      Neural NetworkGaussian processesImage ClassificationTask analysis
    • by 
    •   9  
      Compressed SensingLinear ModelMutual InformationHigh Dimensionality
    • by 
    •   15  
      AlgorithmsData CompressionCompressed SensingMedicine
This paper focuses on why the regular least–squares fitting technique is unstable when used to fit exponential functions to signal waveforms, since such functions are highly correlated. It talks about alternative approaches, such as the... more
    • by  and +1
    •   7  
      Monte CarloCarbon MonoxideRandom WalkConvergence Rate
    • by 
    •   9  
      EngineeringMathematicsComputer ScienceComputational Complexity
    • by 
    •   20  
      GeophysicsImage ProcessingGround Penetrating RadarInverse Problems
    • by 
    •   10  
      MathematicsComputer ScienceModel Predictive ControlComputers
    • by 
    •   20  
      Signal ProcessingDimension ReductionGraph DrawingExperimental Evaluation
    • by 
    •   14  
      Mechanical EngineeringAerospace EngineeringSpaceTomography
    • by 
    •   7  
      Binary ClassificationSampling strategyUpper BoundPerformance Bounds
    • by 
    •   5  
      Information SystemsApplied MathematicsImage ReconstructionBusiness and Management
    • by 
    •   8  
      Model Predictive ControlComputersMathematical SciencesPhysical sciences
    • by 
    •   10  
      Machine LearningSupport Vector MachinesStatistical LearningTikhonov Regularization
    • by 
    •   8  
      Applied MathematicsImage RestorationConvex AnalysisInverse Problem
    • by  and +1
    •   12  
      Earth SciencesStandard DeviationSingular value decompositionPhysical sciences
Abstract. We present an adaptation of the Regularized Least-Squares algorithm for the rank learning problem and an application of the method to reranking of the parses produced by the Link Grammar (LG) depen-dency parser. We study the use... more
    • by 
    •   4  
      Learning problemsIntelligent Data AnalysisRank CorrelationRegularized least squares
    • by 
    •   2  
      Local SearchRegularized least squares
We propose a novel algorithm for greedy forward feature selection for regularized least-squares (RLS) regression and classification, also known as the least-squares support vector machine or ridge regression. The algorithm, which we call... more
    • by 
    •   9  
      Ridge RegressionFeature SelectionSupport vector machineTime Complexity
Abstract We give several properties of the reproducing kernel Hilbert space induced by the Gaussian kernel, along with their implications for recent results in the complexity of the regularized least square algorithm in learning theory.
    • by 
    •   9  
      MathematicsApplied MathematicsLearning TheoryEigenvalues
    • by 
    •   13  
      GeographyEnvironmental ScienceHyperspectral remote sensingSeasonality
    • by 
    •   4  
      Parameter estimationModel SelectionWind SpeedRegularized least squares
    • by 
    •   24  
      Applied MathematicsFuzzy set theoryA Priori KnowledgeFuzzy Systems