The Rhinella granulosa group consists of 13 species of toads distributed throughout open areas of South America and Panama. In this paper we perform a phylogenetic analysis considering all but one species of the group, employing five... more
The Rhinella granulosa group consists of 13 species of toads distributed throughout open areas of South America and Panama. In this paper we perform a phylogenetic analysis considering all but one species of the group, employing five nuclear and four mitochondrial genes, for up to 7910 bp per specimen. Separate phylogenetic analyses under direct optimization (DO) of nuclear and mitochondrial sequences recovered the R. granulosa group as monophyletic and revealed topological incongruence that can be explained mainly by multiple events of hybridization and introgression, both mitochondrial and nuclear. The DO combined analysis, after the exclusion of putatively introgressed or heterozygous genomes, resulted in a phylogenetic hypothesis for the R. granulosa group in which most of the species are recovered as monophyletic, but with interspecific relationships poorly supported. The optimization of morphological (adult and larval), chromosomal, and behavioural characters resulted in 12 putative phenotypic synapomorphies for this species group and some other synapomorphies for internal clades. Our results indicate the need for additional population genetic studies on R. dorbignyi and R. fernandezae to corroborate the taxonomic status of both taxa. Finally, we discuss biological and genetic characteristics of Bufonidae, as possible explanations for the common occurrence of hybridization and introgression observed in some lineages of this family.
Ethnopharmacological relevance: Toads belonging to genus Rhinella are used in Paraguayan traditional medicine to treat cancer and skin infections. Aim of the study: The objective of the study was to determine the composition of venoms... more
Ethnopharmacological relevance: Toads belonging to genus Rhinella are used in Paraguayan traditional medicine to treat cancer and skin infections. Aim of the study: The objective of the study was to determine the composition of venoms obtained from three different Paraguayan Rhinella species, to establish the constituents of a preparation sold in the capital city of Paraguay to treat cancer as containing the toad as ingredient, to establish the effect of the most active Rhinella schneideri venom on the cell cycle using human breast cancer cells and to assess the antiprotozoal activity of the venoms. Methods: The venom obtained from the toads parotid glands was analyzed by HPLC-MS-MS. The preparation sold in the capital city of Paraguay to treat cancer that is advertised as made using the toad was analyzed by HPLC-MS-MS. The effect of the R. schneideri venom and the preparation was investigated on human breast cancer cells. The antiprotozoal activity was evaluated on Leishmania braziliensis, L. infantum and murine macrophages. Results: From the venoms of R. ornata, R. schneideri and R. scitula, some 40 compounds were identified by spectroscopic and spectrometric means. Several minor constituents are reported for the first time. The preparation sold as made from the toad did not contained bufadienolides or compounds that can be associated with the toad but plant compounds, mainly phenolics and flavonoids. The venom showed activity on human breast cancer cells and modified the cell cycle proliferation. The antiprotozoal effect was higher for the R. schneideri venom and can be related to the composition and relative ratio of constituents compared with R. ornata and R. scitula. Conclusions: The preparation sold in the capital city of Paraguay as containing the toad venom, used popularly to treat cancer did not contain the toad venom constituents. Consistent with this, this preparation was inactive on proliferation of human breast cancer cells. In contrast, the toad venoms of Rhinella species altered the cell cycle progression, affecting the proliferation of malignant cells. The findings suggest that care should be taken with the providers of the preparation and that the crude drug present a strong activity towards human breast cancer cell lines. The antiprotozoal effect of the R. schneideri venom was moderate while the venom of R. ornata was devoid of activity and that of R. scitula was active at very high concentration.
Despite the widespread use of ecological niche models (ENMs) for predicting the responses of species to climate change, these models do not explicitly incorporate any population-level mechanism. On the other hand, mechanistic models... more
Despite the widespread use of ecological niche models (ENMs) for predicting the responses of species to climate change, these models do not explicitly incorporate any population-level mechanism. On the other hand, mechanistic models adding population processes (e.g. biotic interactions, dispersal and adaptive potential to abiotic conditions) are much more complex and difficult to parameterize, especially if the goal is to predict range shifts for many species simultaneously. In particular, the adaptive potential (based on genetic adaptations, phenotypic plasticity and behavioral adjustments for physiological responses) of local populations has been a less studied mechanism affecting species' responses to climatic change so far. Here, we discuss and apply an alternative macroecological framework to evaluate the potential role of evolutionary rescue under climate change based on ENMs. We begin by reviewing eco-evolutionary models that evaluate the maximum sustainable evolutionary rate under a scenario of environmental change, showing how they can be used to understand the impact of temperature change on a Neotropical anuran species, the Schneider's toad Rhinella dip-tycha. Then we show how to evaluate spatial patterns of species' geographic range shift using such models, by estimating evolutionary rates at the trailing edge of species distribution estimated by ENMs and by recalculating the relative amount of total range loss under climate change. We show how different models can reduce the expected range loss predicted for the studied species by potential ecophysiological adaptations in some regions of the trailing edge predicted by ENMs. For general applications, we believe that parameters for large numbers of species and populations can be obtained from macroecological generalizations (e.g. allometric equations and ecogeographical A macroecological approach to evolutionary rescue and adaptation to climate change