This paper describes the use of the extended Park's vector approach (EPVA) for diagnosing the occurrence of stator winding faults in operating three-phase synchronous and asynchronous motors. The major theoretical principles related with... more
This paper describes the use of the extended Park's vector approach (EPVA) for diagnosing the occurrence of stator winding faults in operating three-phase synchronous and asynchronous motors. The major theoretical principles related with the EPVA are presented and it is shown how stator winding faults can be effectively diagnosed by the use of this noninvasive approach. Experimental results, obtained in the laboratory, corroborate that these faults can be detected, in the EPVA signature, by the identification of a spectral component at twice the fundamental supply frequency. On-site tests, conducted in a power generation plant and in a cement mill, demonstrate the effectiveness of the EPVA in the detection of stator circuit faults in large industrial motors, rated up to 5 MW
This paper describes the use of the extended Park's vector approach (EPVA) for diagnosing the occurrence of stator winding faults in operating three-phase synchronous and asynchronous motors. The major theoretical principles related with... more
This paper describes the use of the extended Park's vector approach (EPVA) for diagnosing the occurrence of stator winding faults in operating three-phase synchronous and asynchronous motors. The major theoretical principles related with the EPVA are presented and it is shown how stator winding faults can be effectively diagnosed by the use of this noninvasive approach. Experimental results, obtained in the laboratory, corroborate that these faults can be detected, in the EPVA signature, by the identification of a spectral component at twice the fundamental supply frequency. On-site tests, conducted in a power generation plant and in a cement mill, demonstrate the effectiveness of the EPVA in the detection of stator circuit faults in large industrial motors, rated up to 5 MW
This paper describes the use of the extended Park's vector approach (EPVA) for diagnosing the occurrence of stator winding faults in operating three-phase synchronous and asynchronous motors. The major theoretical principles related with... more
This paper describes the use of the extended Park's vector approach (EPVA) for diagnosing the occurrence of stator winding faults in operating three-phase synchronous and asynchronous motors. The major theoretical principles related with the EPVA are presented and it is shown how stator winding faults can be effectively diagnosed by the use of this noninvasive approach. Experimental results, obtained in the laboratory, corroborate that these faults can be detected, in the EPVA signature, by the identification of a spectral component at twice the fundamental supply frequency. On-site tests, conducted in a power generation plant and in a cement mill, demonstrate the effectiveness of the EPVA in the detection of stator circuit faults in large industrial motors, rated up to 5 MW